APR 23, 2015 8:02 AM PDT

New Candidate Drug 'Dials Down' Protein Synthesis

WRITTEN BY: Ilene Schneider
In 2013, University at Buffalo researchers published a paper showing how slowing down protein synthesis can improve myelin production and repair in some demyelinating diseases, such as Charcot-Marie-Tooth disease, (CMT). The research held promise for other misfolded protein diseases, such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis (ALS).
Slowing down protein synthesis can improve myelin production and repair.
The drawback was that the small molecule that slowed protein synthesis had side effects rendering it unsuitable for human use.

At the time, the UB researchers, led by Lawrence Wrabetz, MD, director of UB's Hunter James Kelly Research Institute, noted that if they could find a new version of the agent they used that was safe and effective, it could lead to new therapeutic strategies for CMT

Earlier this month, Wrabetz and others co-authored a paper in the journal Science that does just that. The lead author is Anne Bertolotti, program leader in the Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.

In preclinical trials in animals, the Science paper reports, a new candidate drug called Sephin1 can markedly improve CMT and familial amyotrophic lateral sclerosis (ALS), two diseases of proteostasis (protein homeostasis, the process keeping protein production in balance in cells).

While the diseases are otherwise unrelated, both can result from difficulties in protein folding. In the case of ALS, the misfolded proteins are toxic to neurons and kill them, whereas in CMT neuropathy, the misfolded proteins disturb the production of myelin, the crucial fatty material that normally wraps the axons of neurons, allowing them to signal effectively.

"Our 2013 study and others have found that in diseases caused by proteostasis, keeping protein production more stringently and persistently dialed down is good for limiting disease," said Wrabetz, also professor of neurology and biochemistry in UB's School of Medicine and Biomedical Sciences. "Professor Bertolotti and her colleagues at Cambridge modified a molecule they discovered in 2011 in order to provide a candidate drug that regulates protein production but without the toxic side effects."

Basing the design of the preclinical trial on the same one they published in 2013, Wrabetz and his colleague, Maurizio D'Antonio at San Raffaele Scientific Institute in Milan, joined by Indrajit Das of Cambridge, treated juvenile animals with CMT with Sephin1. After five months of treatment, the results were unequivocally positive.

"Motor function in the animals returned to normal, the amount of myelin destruction was reduced by 70 percent and myelin thickness improved remarkably," said Wrabetz.

There were equally positive results when Das treated the familial ALS model with Sephin1 at Cambridge.

Sephin1 regulates a key factor in protein synthesis, and does so by maintaining phosphorylation, or the addition of a phosphate group.

"The finding is important because proteostasis diseases are multiple and affect many people," said Wrabetz, noting that they include neurodegenerative conditions, such as Alzheimer's and Parkinson's, demyelinating diseases such as multiple sclerosis and certain types of cancers and some subtypes of diabetes.

"It's important to emphasize that further studies are necessary to confirm that the effects in these two animal models will translate to patients with CMT and familial ALS and then, that this candidate drug or similar drugs could be useful in other diseases where proteostasis is a factor," Wrabetz explained. "Nonetheless, this study is an important first step toward developing a therapeutic strategy for these diseases with a candidate drug that could potentially be used in clinical trials."

Wrabetz and Laura Feltri, MD, UB professor of biochemistry and neurology, are also interested in exploring the study's relevance to leukodystrophies, the rare and severe developmental diseases of myelin in the brain and nerves. He noted that imbalances in proteostasis have been reported to contribute to some leukodystrophies.

Currently they are exploring whether altered proteostasis is present in animal models of Krabbe leukodystrophy, the disease that afflicted Hunter James Kelly, for which the Hunter James Kelly Research Institute is named.

Source: University at Buffalo
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JAN 19, 2020
JAN 19, 2020
New Proteins Found in the Optical Processing of Lazy Eyes
Ophthalmology – Amblyopia: By Christine Law M.D.   Researchers in the Bear Lab at the Massachusetts Institute of Technology found surprising con
JAN 27, 2020
Genetics & Genomics
JAN 27, 2020
Finding Cancer-Promoting Genes Using Machine Learning
Machine learning algorithms are increasingly being applied to the vast amount of genetic data that has been generated over the past decade.
FEB 02, 2020
FEB 02, 2020
These cosmetics damage breast cells' DNA
A new approach to studying the effects of two common chemicals used in cosmetics and sunscreens found they can cause DNA damage in breast cells at surprisi
MAR 17, 2020
Genetics & Genomics
MAR 17, 2020
Targeting RNA With CRISPR
Researchers screened thousands of target molecules to find the most effective targets, and have made their data openly available.
MAR 04, 2020
MAR 04, 2020
Memories Are Stored As Specific Neural Firing Patterns
Scientists working on the EPFL Blue Brain Project explain the algebraic patterns of neuron activity.  Scientists at the National Institute of Health&r
APR 09, 2020
Cell & Molecular Biology
APR 09, 2020
A Model of Spinal Development Provides Insight Into Disease
The spinal column develops from a row of structures called somites, which bud off sequentially in a process called somitogenesis as a vertebrate grows.
Loading Comments...