APR 28, 2015 4:51 PM PDT

Scientists Use Gene Editing to Correct Mutation in Cystic Fibrosis

WRITTEN BY: Ilene Schneider
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Left to right, cystic fibrosis cells treated with gene-correcting PNA/DNA show increasing levels of uptake, or use to correct the mutation.
The study was published in Nature Communications.

Cystic fibrosis is an inherited, life-threatening disorder that damages the lungs and digestive system. It is most commonly caused by a mutation in the cystic fibrosis gene known as F508del. The disorder has no cure, and treatment typically consists of symptom management. Previous attempts to treat the disease through gene therapy have been unsuccessful.

To correct the mutation, a multidisciplinary team of Yale researchers developed a novel approach. Led by Dr. Peter Glazer, chair of therapeutic radiology, Dr. Mark Saltzman, chair of biomedical engineering, and Dr. Marie Egan, professor of pediatrics and of cellular and molecular physiology, the collaborative team used synthetic molecules similar to DNA-called peptide nucleic acids, or PNAs-as well as donor DNA, to edit the genetic defect.

"What the PNA does is clamp to the DNA close to the mutation, triggering DNA repair and recombination pathways in cells," Egan explained.

The researchers also developed a method of delivering the PNA/DNA via microscopic nanoparticles. These tiny particles, which are billionths of a meter in diameter, are specifically designed to penetrate targeted cells.

In both human airway cells and mouse nasal cells, the researchers observed corrections in the targeted genes. "The percentage of cells in humans and in mice that we were able to edit was higher than has been previously reported in gene editing technology," said Egan. They also observed that the therapy had minimal off target, or unintended, effects on treated cells.

While the study findings are significant, much more research is needed to refine the genetic engineering strategy, said Egan. "This is step one in a long process. The technology could be used as a way to fix the basic genetic defect in cystic fibrosis."

Source: Yale University
About the Author
Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
NOV 10, 2022
Genetics & Genomics
Human or Host? Parasites in Human History & Prehistory
NOV 10, 2022
Human or Host? Parasites in Human History & Prehistory
We've all seen the latest historical interpretations on television, the movies, or even the stage. And while talented co ...
SEP 21, 2022
Neuroscience
What We Can Learn From Brain Asymmetry
SEP 21, 2022
What We Can Learn From Brain Asymmetry
A study published in eLife examined the subtle differences in functional organization between the left and right side of ...
NOV 06, 2022
Genetics & Genomics
The Lone Participant in a CRISPR Therapy Trial has Died
NOV 06, 2022
The Lone Participant in a CRISPR Therapy Trial has Died
In August of this year, a single patient was enrolled in a trial that used CRISPR to correct a genetic mutation that led ...
NOV 09, 2022
Drug Discovery & Development
Neanderthal Genes Risk Causing Toxicity with Common Drugs
NOV 09, 2022
Neanderthal Genes Risk Causing Toxicity with Common Drugs
While the Neandertals have gone extinct, their DNA still lingers in the genome of modern humans, where it can help or ha ...
NOV 17, 2022
Plants & Animals
Creating living cells from dead Sumatran rhinoceros' tissue
NOV 17, 2022
Creating living cells from dead Sumatran rhinoceros' tissue
The Sumatran rhinoceros are considered a critically endangered species, with an estimated 80 or fewer Sumatran rhinos al ...
NOV 29, 2022
Genetics & Genomics
Eliminating 'Toxic' RNA Molecules to Treat ALS & Dementia
NOV 29, 2022
Eliminating 'Toxic' RNA Molecules to Treat ALS & Dementia
Researchers have developed a way to target RNA molecules that can have a harmful result. Instead of targeting the genome ...
Loading Comments...