JUL 23, 2018 8:21 AM PDT

Developing Self-fertilizing Plants

WRITTEN BY: Carmen Leitch

Plants of the future may not need to be fertilized; they might create their own nutrients. That could be a huge relief for the planet, by increasing food production while reducing harmful chemical runoff. Researchers at Washington University in St. Louis have done something incredible; they have shown that it's possible to engineer plants that can use nitrogen from the air as a fertilizer. This research has been reported in the journal mBio.

Excess fertilizer runs off of crops and into streams, lakes, and rivers where it chokes the life in those ecosystems by encouraging algae growth. It also takes a lot of energy to make that fertilizer in the first place. Plants use the nitrogen in fertilizer to make chlorophyll for photosynthesis, but over 60 percent of the nitrogen in the fertilizer doesn’t even make it to the plant.

Scientists led by Himadri Pakrasi, the Glassberg-Greensfelder Distinguished University Professor in the Department of Biology in Arts & Sciences and director of the International Center for Energy, Environment and Sustainability (InCEES); and Maitrayee Bhattacharyya-Pakrasi, a senior research associate, envisioned the nitrogen in the atmosphere that surrounds all of us as a new source for fertilizer. The air we breathe is around 78 percent nitrogen, so they created a bacterium that could use that nitrogen in the atmosphere.

Plants cannot acquire nitrogen, or fix it, from the air. However, a special kind of photosynthesizing bacteria, cyanobacteria, has that ability. "Cyanobacteria are the only bacteria that have a circadian rhythm," Pakrasi said. 

The circadian rhythm is the daily cycle on which organisms, and their physiology, run. Interestingly, Cyanothece bacteria were utilized in this study; they photosynthesize by day, converting sunlight to fuel. By night they fix nitrogen, after respiring out most of the oxygen made during photosynthesis. The team took Cyanothece genes that confer the circadian rhythm sense and added them to another cyanobacterium, Synechocystis. “We saw a contiguous set of 35 genes that were doing things only at night," Pakrasi explained, "and they were basically silent during the day."

By tinkering with the genes, the team was able to get Synechocystis to fix nitrogen at a rate that was 30 percent higher than the Cyanothece rate. "This means that the engineering plan is feasible," Pakrasi said. "I must say, this achievement was beyond my expectation."

The team plans to continue this work; they want to learn more about the genes used for nitrogen fixation and then begin to apply these findings to plants.
 


Source: Phys.org via WUSTL, mBio

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 06, 2021
Genetics & Genomics
There's More to Viral DNA Than ATGC
MAY 06, 2021
There's More to Viral DNA Than ATGC
Plants and animals have genomes made of four nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine (G). ...
MAY 13, 2021
Genetics & Genomics
The Unique Caecilians of São Tomé Island
MAY 13, 2021
The Unique Caecilians of São Tomé Island
There are many islands that have unique flora and fauna, like these limbless creatures (Photo © Andrew Stanbridge) of Sã ...
JUN 27, 2021
Genetics & Genomics
How Colorful Geckos Can Teach Us About Biology
JUN 27, 2021
How Colorful Geckos Can Teach Us About Biology
A colony of Lemon Frost geckos was created by the reptile shop of Steve Sykes, which included Mr. Frosty, seen here cour ...
JUL 18, 2021
Genetics & Genomics
Only 7% of the Human Genome or Less is Unique to Modern Humans
JUL 18, 2021
Only 7% of the Human Genome or Less is Unique to Modern Humans
Genetic tools have enabled scientists to assess the evolution of humans through DNA, and researchers have shown that mod ...
JUL 27, 2021
Drug Discovery & Development
Immune related genes influence antipsychotic-induced weight gain.
JUL 27, 2021
Immune related genes influence antipsychotic-induced weight gain.
Mental disorders such as Schizophrenia and Bipolar disorder are currently incurable, but some symptoms can be treated wi ...
AUG 03, 2021
Neuroscience
Is it the zombie apocalypse? Nope, just some zombie genes
AUG 03, 2021
Is it the zombie apocalypse? Nope, just some zombie genes
Scientists trace the time duration of postmortem cell activity and gene expression in brain tissue to facilitate researc ...
Loading Comments...