AUG 05, 2018 08:18 AM PDT

Newly ID'ed Lung Cell Changes Our Understanding of Disease

WRITTEN BY: Carmen Leitch

Researchers have discovered a rare type of cell in the lungs, and it may play a major role in cystic fibrosis. Researchers used a thorough analysis of gene expression, scouring thousands of cells to identify the types present in mouse airways. Next, they confirmed their findings in human tissue. This work has also revealed patterns of gene expression in new cell subtypes. This study, which was reported in Nature, has broadened our understanding of lung physiology and lung diseases like bronchitis and asthma. 

Pulmonary ionocytes (orange) extend through neighboring epithelial cells in the upper respiratory tract of the mouse, to the surface of the epithelial lining. Cell nuclei in cyan. / Credit: Montoro et al./Nature 2018

"We have the framework now for a new cellular narrative of lung disease," said Jayaraj Rajagopal, a physician in the Pulmonary and Critical Care Unit at MGH (who is also a professor at Harvard Medical School and a principal faculty member at the Harvard Stem Cell Institute). "We've uncovered a whole distribution of cell types that seem to be functionally relevant. What's more, genes associated with complex lung diseases can now be linked to specific cells that we've characterized. The data are starting to change the way we think about lung diseases like cystic fibrosis and asthma."

For this work, a team including members of HHMI, the Broad Institute of MIT and Harvard and Massachusetts General Hospital (MGH) used a technique to assess the genes that are active in a single cell at one time. That tool is a type of sequencing that produces a snapshot of the RNA that an individual cell has transcribed; it is a relatively recent breakthrough in research science. It was used to build a kind of atlas of cells in the tissue.

"With single-cell sequencing technology, and dedicated efforts to map cell types in different tissues, we're making new discoveries -- new cells that we didn't know existed, cell subtypes that are rare or haven't been noticed before, even in systems that have been studied for decades. And for some of these, understanding and characterizing them sheds new light immediately on what's happening inside the tissue," explained Aviv Regev, director of the Klarman Cell Observatory at the Broad Institute (as well as a professor of biology at MIT, and an HHMI investigator who is also co-chair of the international Human Cell Atlas consortium)."

Newly identified, rare pulmonary ionocytes (green) dot the landscape of ciliated cells (magenta) of the mouse lung airway lining. / Credit: Montoro et al./Nature 2018

One of the unusual cell types identified in this work was named pulmonary ionocytes. They express a gene called CFTR, which is what causes cystic fibrosis when it's mutated. This discovery, therefore, might open up new treatment avenues for cystic fibrosis.

"Cystic fibrosis is an amazingly well-studied disease, and we're still discovering completely new biology that may alter the way we approach it," said Rajagopal. "At first, we couldn't believe that the majority of CFTR expression was located in these rare cells, but the graduate students and postdocs on this project really brought us along with their data."

The team also identified disease-linked genes that were being expressed in cell types that have not been previously associated with those disorders. In addition, a new cellular structure was found in the tissue.
 
"The atlas that we've created is already starting to drastically re-shape our understanding of airway and lung biology," said Regev. "And, for this and other organ systems being studied at the single-cell level, we'll have to drape everything we know on top of this new cellular diversity to understand human health and disease."

Learn more about the Human Cell Atlas and its potential applications from the video, which features a talk by Regev.


Sources: AAAS/Eurekalert! Via Broad Institute of MIT and Harvard, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
Wild Wheat Genes are the Answer to Climate Change Food Shortage
By 2050, the UN has estimated that wheat production needs to increase by 60% in order to feed the world’s population, estimated to reach around 9.6 b...
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
Remarkable Results From First Gene Therapy for Glycogen Storage Disease
A one-year clinical trial of a new gene therapy has produced surprisingly good results for several patients....
NOV 13, 2019
Cell & Molecular Biology
NOV 13, 2019
Visualizing Gene Expression in an Organism with an Ultrasound
Understanding how and when and why certain genes are or are not active is a critical aspect of biomedical research....
NOV 13, 2019
Cancer
NOV 13, 2019
Looking to the depths of the human genome to understand cancer
Have you ever heard of dark matter? No, I’m not talking about the dark matter of the universe – I mean the dark matter that lives within your g...
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
Super-Resolution Microscopy Reveals How DNA Damage is Repaired
People that don't carry functional copies of these proteins are more likely to get diseases that arise from unstable DNA....
Loading Comments...