AUG 20, 2018 06:45 AM PDT

Using Population Genetics to Predict Disease Risk

WRITTEN BY: Carmen Leitch

Science has identified many diseases that can be traced back to an error in a gene, sometimes only a tiny one. But the cause of many deadly diseases is far more complex, and the risk of developing those diseases can be influenced by small changes in many different genes. Now researchers are beginning to understand how to formulate what we know about those small genetic changes into a more significant message about who is at high risk of getting diseases like type 2 diabetes, coronary artery disease, breast cancer, and other conditions.

Image credit: Maxpixel

This work, reported in Nature Genetics by a team of scientists at the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and Harvard Medical School has created a new kind of genetic test that compiles information from millions of different places throughout the human genome to characterize a person’s risk for five diseases. This test may show who is likely to get a disease before they get symptoms, which can help prevent some of these illnesses from happening in the first place.

“We’ve known for [a] long time that there are people out there at high risk for disease based just on their overall genetic variation,” explained senior author Sekar Kathiresan, an institute member and director of the Cardiovascular Disease Initiative at the Broad Institute, as well as director of the Center for Genomic Medicine at MGH and a professor of medicine at Harvard Medical School. “Now, we’re able to measure that risk using genomic data in a meaningful way. From a public health perspective, we need to identify these higher-risk segments of the population so we can provide appropriate care.”

Data from whole-genome sequencing was used with algorithms that assigned risk scores to genetic variations that have been associated with the development of inflammatory bowel disease, coronary artery disease, type 2 diabetes, atrial fibrillation, or breast cancer. That data creates a polygenic risk score, which can predict a person’s risk of getting one of those diseases (and is described in the video). The team found that millions of people seem to be at heightened risk for some of these and other illnesses, suggesting that this effort should be expanded. These scores were tested and validated.

In people with heightened risk, there was no other indication that the disease could strike. “These individuals, who are at several times the normal risk for having a heart attack just because of the additive effects of many variations, are mostly flying under the radar,” explained co-first author Amit V. Khera, a cardiologist at MGH. “If they came into my clinical practice, I wouldn’t be able to pick them out as high risk with our standard metrics. There’s a real need to identify these cases so we can target screening and treatments more effectively, and this approach gives us a potential way forward.”

For coronary artery disease, it appears that about eight percent of people in the UK biobank are at heightened risk for getting the illness compared to others. For breast cancer, one and a half percent of people are at triple the risk for the disease compared to the average individual.

“Ultimately, this is a new type of genetic risk factor,” said Kathiresan. “We envision polygenic risk scores as a way to identify people at high or low risk for a disease, perhaps as early as birth, and then use that information to target interventions — either lifestyle modifications or treatments — to prevent disease. For heart attack, I foresee that each patient will have the opportunity to know his or her polygenic risk number in the near future, similar to way they can know their cholesterol number right now.”

It will also be important to screen many ethnicities for variants that link to disease risk, to be sure that this health information will be used equitably.

Hear more about how these scores might be used in the clinic from the video.

Sources: AAAS/Eurekalert! via Broad Institute, Nature Genetics

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2018
Genetics & Genomics
DEC 10, 2018
Finding New Areas of the Human Genome to Explore
Scientists have found a new way to identify disease-causing genes....
DEC 17, 2018
Genetics & Genomics
DEC 17, 2018
Autism Risk Increased by Mutations in Non-Coding Regions
People have been desperate to learn more about the potential causes of autism, and researchers have been making some progress in recent years....
DEC 22, 2018
Technology
DEC 22, 2018
A Dynamic DNA Origami Technique
It was not a while back ago when researchers developed a unique technique known as ‘DNA origami’ to produce tiles that could be self-assembled ...
JAN 07, 2019
Genetics & Genomics
JAN 07, 2019
Glioblastoma Affects Men Differently Than Women
It's been established that men have slightly higher rates of cancer and a greater likelihood of dying from the disease. But why?...
JAN 17, 2019
Genetics & Genomics
JAN 17, 2019
Researchers Link Genetic Variants to Schizophrenia
Small changes in the sequence of the gene that encodes for a neurotransmitter receptor have been linked to the development of schizophrenia....
JAN 21, 2019
Videos
JAN 21, 2019
Detecting Disease With SHERLOCK
You may have heard of the CRISPR gene-editing tool, which often uses Cas9. But there are other enzymatic options....
Loading Comments...