JUN 16, 2015 12:11 PM PDT

Actin Right - and Left

WRITTEN BY: Ilene Schneider
Twisting protein fibers that form a cell's internal scaffolding called its cytoskeleton enable the cell to distinguish right from left, according to a study published in the April issue of Nature Cell Biology and reported by Tina Hesman Saey in Science News. The counterclockwise fibers, composed of actin, have such functions as helping cells to migrate from one part of a developing embryo to another, the article explained (https://www.sciencenews.org/article/twisty-chains-proteins-keep-cells-oriented).
A special assembly of protein in a cell helps the cell distinguish right from left and bind to other cells in order to move.
According to cell biologist Alexander Bershadsky and his colleagues, there is evidence that the cytoskeleton enables cells to distinguish right from left. Bershadsky is with the Mechanobiology Institute, National University of Singapore, and the Weizmann Institute of Science, Israel. He and his colleague, Yee Han Tee, videotaped actin fibers organizing inside of human foreskin cells that were placed under a microscope. They found that actin's natural asymmetry "leads fibers extending from the cell's edge to twist counterclockwise." Bershadsky explained that this orientation has an impact on navigation, mobility and other functions of the cell, "as if the direction of a screw's threads could determine how a whole machine works."

Bershadsky, who studies how cells move and how physical forces enable cells to attach themselves to the substrate and to one another, explained that actin is "the most abundant cellular protein in mammalian cells." Actin assembles into filaments. Along with hundreds of accessory proteins, including molecular motors of the myosin family, these filaments create various superstructures that together make up the actin cytoskeleton. The actin cytoskeleton has the functions of maintaining cell shape, generating cell motility, establishing cell adhesion to other cells and extracellular substrates and providing cell mechanosensitivity (http://labs.mbi.nus.edu.sg/abcd/index.html).

According to the Mechanobiology Institute at National University of Singapore, Bershadsky's studies were "among the first in which the phenomenon of adhesion-dependent mechanosensitivity was discovered and demonstrated." In these studies, Bershadsky and his colleagues demonstrated that focal adhesions function as extremely small mechanosensors, because the assembly of such adhesions depends on the use of external or cell-generated pulling forces. Bershadsky's current studies are attempting to clarify the mechanisms involved in the adhesion dependent mechanosensitivity. Some of his other studies involve the functions of microtubules in the regulation of cell motility and adhesion. His area of interest includes formins as potent regulators of actin assembly and actin-microtubule crosstalk (http://mbi.nus.edu.sg/alexander-bershadsky/).

"Actin self-organization in the cell is coordinated by diverse signaling molecules," Bershadsky concluded. "The main direction of our recent research focuses on understanding actin cytoskeleton- and adhesion-dependent mechanisms of cell mechanosensitivity and the establishment of left-right cell asymmetry."
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JAN 26, 2020
Genetics & Genomics
JAN 26, 2020
Free-Floating Mitochondria Found in Blood
Mitochondria are one of the specialized structures or organelles that can be found in eukaryotic cells, as well as some places outside of the cell....
JAN 26, 2020
Microbiology
JAN 26, 2020
The Planet's Soil is Home to Microbe-Eating Protists
Protists don't fit neatly into any other category of organism; they are eukaryotes, but they are not a plant, fungi or animal....
JAN 28, 2020
Genetics & Genomics
JAN 28, 2020
Developing a Gene Therapy to Treat Duchenne Muscular Dystrophy
Because of a genetic mutation, people that have Duchenne muscular dystrophy lack functional copies of a protein called dystrophin....
FEB 17, 2020
Cancer
FEB 17, 2020
Listening in on cancer cells
Research published today in Nature Methods reports a new technique of “listening” to cancer cells. While it may sound odd (no pun intended...
FEB 22, 2020
Genetics & Genomics
FEB 22, 2020
Evidence of Resistance to White-Nose Syndrome Appears in Some Bats
A small new study suggests that some bats might be able to resist a devastating fungal disease called white nose syndrome that has destroyed many bat populations....
MAR 04, 2020
Cell & Molecular Biology
MAR 04, 2020
CRISPR Used Inside of a Patient For the First Time
In a first, scientists have used the CRISPR gene-editing tool inside of a person's body to treat a serious eye disorder....
Loading Comments...