MAR 12, 2019 1:53 PM PDT

Tiny Blood Samples Provide Insight Into Newborn Development

WRITTEN BY: Carmen Leitch

After a baby is born, it undergoes a series of rapid biological changes as it develops, adapts to living outside of the womb, and is exposed to microbes in its environment. Researchers don’t know a lot about all of those processes, partly because it’s been challenging to gather large biological samples from newborns, which often are required for extensive studies. Now scientists have found a way to overcome that hurdle; they have developed a technique that uses only half a teaspoon of blood for molecular, metabolic and genetic analysis. The findings have been reported in Nature Communications, and could dramatically improve infant care.

Image credit: Pixabay

"Up to two-thirds of newborn deaths can be prevented if effective health measures are provided at birth and during the first week of life. Of the 5.4 million under-five child deaths per year, about half occur during the neonatal period, i.e., the first month of life,” explained the senior author of the study Beate Kampmann, Professor of Pediatric Infection and Immunity and Director of the Vaccine Center at the London School of Hygiene & Tropical Medicine.

"Knowledge about key developmental processes during our earliest days remains sparse, but this study plugs some of those crucial gaps. This work is particularly important for vaccine research. Newborns have very limited protection from infection in early life and there is an urgent need to optimize protective measures, including vaccines, used in this age group,” added Kampmann.

For this work, scientists involved with the Expanded Program on Immunization Consortium (EPIC), including researchers at the MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, used computational approaches to integrate data obtained from the samples they collected. Unsurprisingly, they revealed thousands of changes in immunity and gene expression. 

In this study, the parents of newborns living in communities of The Gambia in West Africa were recruited. Two blood samples were taken from the infants - one when they were born, and one on either the first, third, or seventh day of life.

After processing, the researchers revealed dramatic biochemical changes as development proceeded. Their work was then confirmed in another group of newborns in Australia. There were common trajectories in the development of the two groups, indicating that age-specific biological pathways are at work.

"The MRC Unit in The Gambia has carried out important studies in newborns for a long time in order to optimize the use of vaccines. Given our excellent community relations and infrastructure, we were ready to partner with our collaborators to apply the new tools of systems biology to very small blood samples. We wanted to establish this work in a real-world situation in order to gain insight into immune development in a setting where new interventions can have the biggest impact on newborn survival,” said Kampmann.

"Most infections in the world occur early in life, and newborns have the greatest susceptibility and the worst outcomes. This work provides a valuable window into health and disease in the first week of life. Our exciting findings allows us to ask bigger questions about the differences between different populations and the impact of biomedical interventions such as vaccines on development,” said a senior author of the work Ofer Levy, Director of the Precision Vaccines Program at Boston Children's Hospital.

"Currently, most vaccines are developed by trial and error. We seek deep molecular insight into vaccine function in early life so we can better develop infant vaccines for the future. We demonstrated that it's possible to recruit newborns in a resource-poor setting, obtain small amounts of their blood, process it, ship it, conduct systems biology assays and integrate the results -- turning big data into knowledge."

Larger batches of patient samples will be needed to confirm these findings, and the authors are already looking at the impact of vaccines in a follow-up project in The Gambia and Papua New Guinea. More participants will be included in that work.

Professor Kampmann is featured discussing her research in the video.

 


Sources: AAAS/Eurekalert! via London School of Hygiene & Tropical Medicine, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 16, 2021
Clinical & Molecular DX
What Dead Cells Can Tell Us About Our Health
FEB 16, 2021
What Dead Cells Can Tell Us About Our Health
Taking a sample of tissue called a biopsy from an organ suspected of harboring a pathology is a common diagnostic practi ...
FEB 20, 2021
Genetics & Genomics
ADHD Can Share Genetic Risk Factors Linked to Aggressive, Antisocial RIsk Factors
FEB 20, 2021
ADHD Can Share Genetic Risk Factors Linked to Aggressive, Antisocial RIsk Factors
Attention-deficit/hyperactivity disorder (ADHD) is thought to affect almost ten percent of children in the United States ...
MAR 01, 2021
Cardiology
How Heart Problems May Lead to Memory Deficits
MAR 01, 2021
How Heart Problems May Lead to Memory Deficits
Researchers have used a mouse model to show that heart problems can lead to disruptions in gene activity in the memory c ...
MAR 02, 2021
Genetics & Genomics
Human Genome Sequencing Reveals Surprising Level of Structural Variation
MAR 02, 2021
Human Genome Sequencing Reveals Surprising Level of Structural Variation
It was a landmark event when the human genome was finally sequenced, and the Human Genome Project came to an end. But li ...
MAR 15, 2021
Cell & Molecular Biology
When Sample Temperature Matters: How to Keep Your Cool in the Lab
MAR 15, 2021
When Sample Temperature Matters: How to Keep Your Cool in the Lab
Temperature control is critical to many molecular and cellular experiments, but managing sample temperature requires eit ...
MAR 30, 2021
Immunology
Single-Cell Technology Exposes Melanoma's Weak Spot
MAR 30, 2021
Single-Cell Technology Exposes Melanoma's Weak Spot
The immune system encompasses a powerful arsenal of weapons against pathogenic threats. But what stops healthy tissues i ...
Loading Comments...