MAR 14, 2019 6:57 AM PDT

Pesticide Exposure Changes Gene Expression in Bumblebees

WRITTEN BY: Carmen Leitch

Pesticides are commonly used all over the world. Researchers decided to take a biomedical approach to examine the impact of two different pesticides on gene expression in bumblebees, which are important pollinators. They found that bumblebee workers and queens were both affected, but in different ways. One pesticide, clothianidin, had a much more dramatic influence as well. The findings have been reported in Molecular Ecology.

“Governments had approved what they thought were ‘safe’ levels, but pesticides intoxicate many pollinators, reducing their dexterity and cognition and ultimately survival. This is a major risk because pollinators are declining worldwide yet are essential for maintaining the stability of the ecosystem and for pollinating crops,” said the lead author of the study Dr. Yannick Wurm of Queen Mary's School of Biological and Chemical Sciences. “While newer pesticide evaluation aims to consider the impact on behavior, our work demonstrates a highly sensitive approach that can dramatically improve how we evaluate the effects of pesticides.”

In this study, either clothianidin or imidacloprid, both in the neonicotinoid class of pesticides and in current use, were applied to bumblebee colonies at levels that mimicked those in the field. The scientists found that clothianidin had a stronger effect than imidacloprid.

The investigators controlled for the social environment and worker age of the bees, and determined that the expression of 55 genes was altered after clothianidin exposure; 31 genes were more active while the remainder were reduced. The researchers suspect that some of those genes are trying to rid the body of toxins. Other gene expression changes may indicate why neonicotinoids change bumblebee behavior. In queens, however, only seventeen genes showed different expression levels; sixteen of those were higher after clothianidin pesticide exposure.

Bumblebee colony. / Credit: TJ Colgan

“This shows that worker and queen bumblebees are differently wired and that the pesticides do not affect them in the same way. As workers and queens perform different but complementary activities essential for colony function, improving our understanding of how both types of colony member are affected by pesticides is vital for assessing the risks these chemicals pose,” said the first author of the report Dr. Joe Colgan of Queen Mary University of London (QUML).

The investigators are hopeful that this approach will now be used for broader studies, so that we will know more about how various pesticides are affecting different species on the molecular level.

“We examined the effects of two pesticides on one species of bumblebee. But hundreds of pesticides are authorized, and their effects are likely to substantially differ across the 200,000 pollinating insect species which also include other bees, wasps, flies, moths, and butterflies,” noted Colgan. 

“Our work demonstrates that the type of high-resolution molecular approach that has changed the way human diseases are researched and diagnosed, can also be applied to beneficial pollinators. This approach provides an unprecedented view of how bees are being affected by pesticides and works at large scale. It can fundamentally improve how we evaluate the toxicity of chemicals we put into nature,” Wurm concluded. 

Recent research done at the University of Illinois has also revealed new information about how neonicotinoids impact ground-nesting bees, which include most bee species. This work was published in Scientific Reports.

“This is an important piece of work because it’s one of the first studies to look at realistic concentrations of pesticides that you would find in the soil as a route of exposure for bees. It’s a very under-explored route, especially for some of the more solitary species that nest in the ground,” said Nick Anderson, a graduate student in entomology, who led the study with his advisor, Alex Harmon-Threatt, a professor of entomology.

Unlike honey and bumble bees, ground nesting bees stay underground for about 49 weeks, coming out for three to mate, lay eggs and forage.

After mimicking environmental neonicotinoid exposure, the female bees were found to live shorter lives while males were longer lived. There may be small changes in bee development due to the pesticides, but more work will be required to understand what’s happening to the bees. Genetic studies, as illustrated by the first report, could help in that effort.


Sources: QUML, University of Illinois at Urbana-Champaign, Scientific Reports,  Molecular Ecology

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 26, 2022
Genetics & Genomics
Scientists Make a Breakthrough in Mitochondrial Genome Editing
APR 26, 2022
Scientists Make a Breakthrough in Mitochondrial Genome Editing
Most genetic work is focused on the genome found in the nucleus, which contains the genes that encode for almost all of ...
MAY 25, 2022
Cancer
TCGA: An Important Tool for Cancer Research
MAY 25, 2022
TCGA: An Important Tool for Cancer Research
In 2006, the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) began a cancer gen ...
JUN 08, 2022
Microbiology
Shipwrecks are Rich with Microbial Diversity
JUN 08, 2022
Shipwrecks are Rich with Microbial Diversity
Bacteria have helped lay the foundations for complex life by creating a hospitable atmosphere on our planet, and they co ...
JUN 23, 2022
Clinical & Molecular DX
Accelerate diagnostic development with the right supplier
JUN 23, 2022
Accelerate diagnostic development with the right supplier
Diagnostic assays like the one you’re developing are in demand. But your task isn’t simple. Set yourself up ...
JUL 21, 2022
Clinical & Molecular DX
Scientists Find a Potential Cause and Treatment for Shorter Life Span in Men
JUL 21, 2022
Scientists Find a Potential Cause and Treatment for Shorter Life Span in Men
Scientists are beginning to understand the significant impact of a process called hematopoietic mosaic loss of Y chromos ...
AUG 11, 2022
Cell & Molecular Biology
A Natural Compound Stimulates Repair in Muscle Tissue
AUG 11, 2022
A Natural Compound Stimulates Repair in Muscle Tissue
When tissues in our bodies experience damage, there are various repair mechanisms that can be employed. When muscles are ...
Loading Comments...