AUG 04, 2015 11:22 AM PDT

Decoding Chromosome 21

A gene on a chromosome linked with Down syndrome also has implications for developing childhood leukemia, according to researchers at Northwestern University School of Medicine. Their work, published in the Journal of Experimental Medicine and reported in Bioscience Technology, sheds light on how the DYRK1A gene functions (http://www.biosciencetechnology.com/news/2015/08/uncovering-genetic-factors-leukemia?et_cid=4709958&et_rid=45505806&type=cta).
Northwestern University researchers pinpoint the reason children with Down syndrome are more likely to contract leukemia.
According to the American Cancer Society, children with Down syndrome have an extra (third) copy of chromosome 21 (also called trisomy). These children are 20 times more likely to develop either acute lymphocytic leukemia or acute myeloid leukemia than are other children, with an overall risk of about 2 to 3 percent. Down syndrome has also been linked with transient leukemia, a leukemia-like condition within the first month of life, which often resolves on its own without treatment (http://www.cancer.org/cancer/leukemiainchildren/detailedguide/childhood-leukemia-risk-factors).

Because that chromosome is important for research in the genetic basis of the cancer, it is a "major goal...to identify the specific gene - or genes - on chromosome 21 responsible for the increased incidence of leukemia in this population," said study senior author John Crispino, Ph.D., Robert I. Lurie, M.D., and Lora S. Lurie Professor in Medicine-Hematology/Oncology and Biochemistry and Molecular Genetics. Supported by a National Institutes of Health grant, the Samuel Waxman Cancer Research Foundation, the Leukemia and Lymphoma Society, the Rally Foundation and the Bear Necessities Foundation, Crispino's laboratory conducted a study to determine how the leukemia-promoting DYRK1A gene works in cells.

Crispino and his colleagues previously discovered that a gene on chromosome 21 called DYRK1A is linked with the development of leukemia. In the recent study they expanded on that research by evaluating the gene in depth. They specifically sought an understanding of how DYRK1A plays a part in blood cell production. The over-production of immature lymphocytes is a characteristic of acute lymphoblastic leukemia.

Crispino, along with first author Benjamin Thompson, M.D., Ph.D., a postdoctoral fellow, developed a mouse model that does not have DYRK1A in blood cells. The researchers noted that two types of white blood cells -- B and T lymphocytes -- were greatly hampered from developing without the gene. They also discovered evidence that DYRK1A is usually "responsible for regulating cell cycle progression in those lymphocytes." As they explained, "Because they have extra copies of chromosome 21, children with Down syndrome have more DYRK1A than usual."

Crispino concluded, "This finding is exciting to us because human B-cell acute lymphoblastic leukemia cases show increased levels of DYRK1A. The results suggest that DYRK1A may be a novel target for therapy in this form of leukemia."
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 10, 2018
Genetics & Genomics
SEP 10, 2018
In Autism, Background Mutations can Impact Disease Severity
While people are made from the same genes, small changes in those genes can have an impact on our biology....
SEP 15, 2018
Videos
SEP 15, 2018
Nature's Giant Genomes
We have around three billion base pairs in our genome. There are some organisms with far more....
OCT 02, 2018
Health & Medicine
OCT 02, 2018
Many Patients Are Unaware of Increased Cancer Risk
Just as recently as a few decades ago, many common health screenings were not readily available. Mammography, for breast cancer detection, wasn't ...
OCT 18, 2018
Genetics & Genomics
OCT 18, 2018
Expanding the List of Genes That Cause Multiple Sclerosis
For many years, researchers have been searching for the genetic influences that affect the development of MS....
OCT 21, 2018
Microbiology
OCT 21, 2018
The Evolution and Spread of Drug-resistant Tuberculosis
Once thought to have come from Africa ~5,000 years ago, the dominant form of this pathogen really came from Europe, and colonialists spread it around the globe....
OCT 23, 2018
Microbiology
OCT 23, 2018
DNA Pumps up Bacterial Cells
Cells are the basic building blocks of life, and have been well-studied since they were discovered in 1655....
Loading Comments...