AUG 04, 2015 11:22 AM PDT

Decoding Chromosome 21

WRITTEN BY: Ilene Schneider
A gene on a chromosome linked with Down syndrome also has implications for developing childhood leukemia, according to researchers at Northwestern University School of Medicine. Their work, published in the Journal of Experimental Medicine and reported in Bioscience Technology, sheds light on how the DYRK1A gene functions (http://www.biosciencetechnology.com/news/2015/08/uncovering-genetic-factors-leukemia?et_cid=4709958&et_rid=45505806&type=cta).
Northwestern University researchers pinpoint the reason children with Down syndrome are more likely to contract leukemia.
According to the American Cancer Society, children with Down syndrome have an extra (third) copy of chromosome 21 (also called trisomy). These children are 20 times more likely to develop either acute lymphocytic leukemia or acute myeloid leukemia than are other children, with an overall risk of about 2 to 3 percent. Down syndrome has also been linked with transient leukemia, a leukemia-like condition within the first month of life, which often resolves on its own without treatment (http://www.cancer.org/cancer/leukemiainchildren/detailedguide/childhood-leukemia-risk-factors).

Because that chromosome is important for research in the genetic basis of the cancer, it is a "major goal...to identify the specific gene - or genes - on chromosome 21 responsible for the increased incidence of leukemia in this population," said study senior author John Crispino, Ph.D., Robert I. Lurie, M.D., and Lora S. Lurie Professor in Medicine-Hematology/Oncology and Biochemistry and Molecular Genetics. Supported by a National Institutes of Health grant, the Samuel Waxman Cancer Research Foundation, the Leukemia and Lymphoma Society, the Rally Foundation and the Bear Necessities Foundation, Crispino's laboratory conducted a study to determine how the leukemia-promoting DYRK1A gene works in cells.

Crispino and his colleagues previously discovered that a gene on chromosome 21 called DYRK1A is linked with the development of leukemia. In the recent study they expanded on that research by evaluating the gene in depth. They specifically sought an understanding of how DYRK1A plays a part in blood cell production. The over-production of immature lymphocytes is a characteristic of acute lymphoblastic leukemia.

Crispino, along with first author Benjamin Thompson, M.D., Ph.D., a postdoctoral fellow, developed a mouse model that does not have DYRK1A in blood cells. The researchers noted that two types of white blood cells -- B and T lymphocytes -- were greatly hampered from developing without the gene. They also discovered evidence that DYRK1A is usually "responsible for regulating cell cycle progression in those lymphocytes." As they explained, "Because they have extra copies of chromosome 21, children with Down syndrome have more DYRK1A than usual."

Crispino concluded, "This finding is exciting to us because human B-cell acute lymphoblastic leukemia cases show increased levels of DYRK1A. The results suggest that DYRK1A may be a novel target for therapy in this form of leukemia."
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
MAY 06, 2021
Genetics & Genomics
There's More to Viral DNA Than ATGC
MAY 06, 2021
There's More to Viral DNA Than ATGC
Plants and animals have genomes made of four nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine (G). ...
MAY 20, 2021
Genetics & Genomics
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
MAY 20, 2021
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
CRISPR genome editing generates double-stranded breaks (DSBs) in genomic DNA and is a targeted method by which to achiev ...
MAY 23, 2021
Plants & Animals
Where Did the Monkeys Near Fort Lauderdale Airport Come From?
MAY 23, 2021
Where Did the Monkeys Near Fort Lauderdale Airport Come From?
This image by Aaron Mencia shows two vervet monkeys in a mangrove forest near the Fort Lauderdale-Hollywood Internationa ...
MAY 25, 2021
Genetics & Genomics
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
MAY 25, 2021
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
A disorder called 22q11.2 deletion syndrome (22q) affects about one in 2,000 births, and causes dysfunction in every org ...
JUN 06, 2021
Cell & Molecular Biology
Caught in the Act of RNA Transcription
JUN 06, 2021
Caught in the Act of RNA Transcription
Researchers have now been able to capture an enzyme called RNA polymerase on video as it copies a DNA sequence into an R ...
JUN 10, 2021
Cell & Molecular Biology
Does Lithium Prevent Colon Cancer?
JUN 10, 2021
Does Lithium Prevent Colon Cancer?
Researchers found that a drug used in the treatment of mental illness can promote the fitness of healthy gut stem cells, ...
Loading Comments...