SEP 11, 2019 5:11 PM PDT

Rearranging Whole Chromosomes with CRISPR

WRITTEN BY: Carmen Leitch

We've long known that errors in the human genome can lead to serious diseases. Researchers knew it might be possible one day to make edits to the genomic sequence to repair those genetic mutations and cure the disease they cause. The CRISPR/Cas9 was developed in an effort to create a reliable gene-editing tool and researchers have been able to use it to make small, targeted changes in the genome. It’s been applied in many ways to different organisms, and has become an indispensable tool in the laboratory for modeling and studying disease. There are a few studies underway that treat human patients as well.

There was one area where CRISPR came up short, however - when it came to making huge changes, or more specifically, rearranging chromosomes in the Escherichia coli bacterium, which is a microbe that’s commonly used in research and industry. Scientists have now overcome this hurdle; reporting in Science, researchers have combined CRISPR with other techniques to easily alter large sections of the genome.

"This new paper is incredibly exciting and a huge step forward for synthetic biology," Anne Meyer, a synthetic biologist at the University of Rochester in New York who was not involved in the work told Science. Synthetic biologists will now be able to take on "grand challenges," she said, like "writing of information to DNA and storing it in a bacterial genome or creating new hybrid bacterial species that can carry out novel [metabolic reactions] for biochemistry or materials production."

Synthetic biologists sometimes have to work with long segments of DNA, and there are challenges involved. Long linear pieces of DNA are easily destroyed in the cell by enzymes called endonucleases, so scientists create circular sequences called plasmids. They are not destroyed by bacterial cells, are easy to manipulate, can be cut or joined back together with enzymes, and delivered into E. coli, which can produce huge amounts of the plasmid as the bacteria grow. But plasmids can only be so big, and aren’t large enough to accommodate the millions of bases that synthetic biologists may want to utilize.

Chromosomes tagged with red and green fluorescent probes / Credit: National Institute of Standards and Technology

"You can't get very large pieces of DNA in and out of cells," said Jason Chin, a synthetic biologist at the Medical Research Council (MRC) Laboratory of Molecular Biology in Cambridge, U.K.

The enzymes that are used to alter plasmids are applied in far more non-specific ways than CRISPR, and can leave undesired changes that build up as more are produced in the bacteria.

Chin and colleagues have adapted CRISPR so it can remove large pieces of DNA seamlessly. They have also applied another enzyme called lambda red recombinase to rejoin the broken ends of the genome back together after the middle piece has been excised, all while being protected from the cellular endonucleases that break linear DNA segments down.

With this tool, researchers can generate pairs of circular chromosomes, and swap them out or back in whenever desired. "Now, I can make a series of changes in one segment and then another and combine them together. That's a big deal," noted Chang Liu, a synthetic biologist at the University of California, Irvine.

Bacteria can now be used to generate different kinds of proteins that incorporate synthetic amino acids, or larger quantities of critical molecules, for example.


Sources: Science News, Science Chin et al

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 17, 2020
Cancer
FEB 17, 2020
Listening in on cancer cells
Research published today in Nature Methods reports a new technique of “listening” to cancer cells. Whil ...
MAR 04, 2020
Genetics & Genomics
MAR 04, 2020
DNA Fragments and Cartilage Recovered From 75-Million-Year-Old Dinosaur Bones
An international team of researchers has analyzed cartilage from a baby duckbilled dinosaur, and they have identified bi ...
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defec ...
MAR 29, 2020
Cell & Molecular Biology
MAR 29, 2020
Investigating How Genetic Variants Impact the Cerebral Cortex
The outermost layer of the brain is called the cerebral cortex, a relatively thin sheet of gray matter that performs a v ...
APR 05, 2020
Genetics & Genomics
APR 05, 2020
Gene Variants Impact Natural Sunscreen & Vitamin D Levels
Vitamin D deficiencies have been linked to a variety of chronic diseases including bone disorders and heart disease.
MAY 26, 2020
Neuroscience
MAY 26, 2020
Alzheimer's Gene Doubles Risk of Severe COVID-19
Researchers from the University of Exeter, England, and the University of Connecticut have found that people carrying fa ...
Loading Comments...