AUG 28, 2015 2:20 PM PDT

Cells Can Regulate Gene Expression across Multiple Cell Types

WRITTEN BY: Sarah Hertrich
Microbial consortia are described as assemblages of different species of microbes in physical as well as biochemical contact with one another. This type of relationship between organisms is also known as microbe-microbe commensalism or mutualism. These types of relationships are becoming increasingly recognized as the “real world” of microbiology as opposed to single bacterial colony representations typically used in microbiological studies. It is thought that results of such experiments are often misinterpreted due to the previous belief of such entities existing as individuals instead of a complex network of multiple entities such as was reported in this previous study.
Microbial consortia are described as assemblages of different species of microbes in physical as well as biochemical contact with one another.
Using the theory of microbial consortia, researchers from Rice University have created a type of “living circuit” from multiple species of bacteria that trigger the bacteria to symbiotically cooperate to change protein expression. The study, published recently in Science, describes how the researchers constructed two genetically distinct populations of E. coli to create a bacterial consortia that exhibits synchronized transcriptional fluctuations which can be “activated” by one species and “repressed” by the other.  

Both species were cultured together in a microfluidic device of a synthetic dual-feedback oscillator that typically functions with a single strain of bacteria. Time-lapse fluorescence microscopy was used to observe the two strains as they grew together inside of the chamber. When cultured together, synchronous, in-phase oscillations appeared in fluorescent reporters of the strains. Oscillations did not occur when either of the E. coli strains were cultured inside of the device individually.



The results of their study demonstrate that the engineering of population phenotypes in microbial consortia is possible. However; the population ratio within a consortia can fluctuate so special attention should be paid to the selection of bacterial isolates to engineer such synthetic circuits. This new study provides insight into the use of microbial consortia as a platform for testing the relationship between microbial populations and gene regulation. Such applications have the potential to be used in drug development where microbial “circuits” can turn signaling molecules on or off through specific controlled biologically processes in the body, such as diet.
 
 Sources: Science Daily, Science Magazine, Small Things Considered, LabRoots
 
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
JAN 16, 2020
Genetics & Genomics
JAN 16, 2020
Sequence the Kraken! The Genome of the Giant Squid is Revealed
Giant squid, which can weigh over 900 kilograms and grow to thirteen meters, are the stuff of legend....
JAN 19, 2020
Immunology
JAN 19, 2020
Overactive Immune Gene May Cause Schizophrenia
A windy road links excessive activity of the “C4” gene to the development of schizophrenia. Researchers begin to study C4 activity as part of n...
FEB 03, 2020
Cell & Molecular Biology
FEB 03, 2020
Brain Organoids May Not be Living Up to the Hype
Cells can be grown in special ways to create three-dimensional, miniature models of organs. But how good are they?...
FEB 07, 2020
Neuroscience
FEB 07, 2020
People with Autism have Fewer Fatty Sheaths Between Neurons
Myelin, a fatty substance, accelerates the delivery of electrical signals between neurons in the brain. Now, researchers have found that people with autism...
FEB 17, 2020
Cell & Molecular Biology
FEB 17, 2020
Scientists Learn Why Some Body Clocks Are Too Short
Some individuals are morning people to the extreme. Some genetic mutations give the body clock a 20 instead of 24-hour cycle....
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defects....
Loading Comments...