NOV 14, 2019 10:38 AM PST

Learning More About Changes in Cancer Cell Identity

WRITTEN BY: Carmen Leitch

The cells in our body all contain the complete genome, but cells in different tissues can have very different roles; cells in the heart are not like cells in the brain, for example. The role of cells depends on the genes that they express. There are multiple factors that can influence gene expression, including chemical modifiers that mark the genome, called epigenetic tags, or the epigenome.

When cancer develops, it has roots in genetic problems; there is genetic dysfunction impacting the way cells divide, grow, and function. Some cancers can occur because of inherited errors, and others might arise through the natural course of cell division; our bodies have to replace millions of cells with new ones every day and replicate the genome every time. Other times, cancer happens because of changes in epigenetics. Scientists have also discovered that cancer cells can change their identity, a process called transdifferentiation, and cells can take on new functions and characteristics, which is often caused by epigenetic alterations.

New research reported in the journal Leukemia has described how a leukemia type B cell can change into a different cell called a macrophage, and the epigenetic changes that accompany this shift in identity. This process can be seen in the video above, when a transcription factor initiates the transdifferentiation.

Microscope image of type B leukemic cells (left) that turn into another cell type: macrophagues (right)./  Credit: Manel Esteller

"We began with this work stating that if DNA methylation is the best known and validated epigenetic mark that confers its appearance to cells, such chemical modification could be directly involved in enabling tissue transdifferentiation. By using a cellular model of lymphoblastic leukemia B cells that we could transform into macrophages, we obtained a high-resolution epigenetic profile of each step of the transdifferentiation process," explained Dr. Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute, ICREA researcher and professor of the University of Barcelona.

"This transdifferentiation example is interesting since it doesn't only change the cell type, but also its behavior. While a cancerous cell multiplicates fast, a highly differentiated cell doesn't proliferate at all. We saw that the epigenome of the leukemic cell changes when it transdifferentiates. Chemically, the cells disguise their epigenome to resemble a macrophage. The changes occur in thousands of sites of the genetic material, even between chromosomal regions far apart from each other, which approach to activate those genes that provide a distinct appearance to the cell," continued Esteller.

This work could help lead to new treatments for leukemia. "Applications of this discovery could be avoiding the emergent resistance to cancer treatments with drugs: if we blocked the epigenetic changes identified, leukemia cells could not select the transdifferentiation strategy to escape from the antitumor effect of the drug, and the therapy would be more effective," Esteller concluded.

Sources: AAAS/Eurekalert! via Josep Carreras Leukemia Research Institute, Leukemia

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 08, 2022
Genetics & Genomics
Evidence of Trauma in DNA Could Predict Who is Most at Risk
SEP 08, 2022
Evidence of Trauma in DNA Could Predict Who is Most at Risk
A recent study has outlined the findings from a 17-year study of almost 500 people who experienced trauma in childhood. ...
SEP 19, 2022
Genetics & Genomics
Some Gene Variants May Encourage Active or Sedentary Lifestyles
SEP 19, 2022
Some Gene Variants May Encourage Active or Sedentary Lifestyles
There is still a lot of debate about how much a person's genes influence their behavior. Twin studies are one way to hel ...
OCT 08, 2022
Plants & Animals
Genomic Research Could Help Better Treat Certain Fungal Infections
OCT 08, 2022
Genomic Research Could Help Better Treat Certain Fungal Infections
Fungi can cause a range of infections and problems for humans. However, despite the fact that we encounter and inhale fu ...
OCT 12, 2022
Plants & Animals
New gibbon fossils suggest the genus is 8 million years old
OCT 12, 2022
New gibbon fossils suggest the genus is 8 million years old
New fossil teeth and face suggest gibbon ancestors are older than thought
OCT 22, 2022
Plants & Animals
Could Wolves Be Man's New Best Friend?
OCT 22, 2022
Could Wolves Be Man's New Best Friend?
Our connection to canines goes back at least 15,000 years. A dog's affection for its human companion is a part of wh ...
NOV 16, 2022
Genetics & Genomics
Genes That Diagnose Lyme Disease are Identified
NOV 16, 2022
Genes That Diagnose Lyme Disease are Identified
Lyme disease is caused by a bacterium that is transmitted by tick bites. The incidence of Lyme disease has been increasi ...
Loading Comments...