NOV 24, 2019 8:56 AM PST

Plants Moved to Land by Stealing Genes from Soil Bacteria

WRITTEN BY: Annie Lennon

Algae were the first pants on earth, and they lived underwater. How they managed to move onto land was largely a mystery, until now. By studying the genome of an unusual alga, an international group of scientists have discovered that to move to land, algae “stole” better-adapted genes from soil bacteria. 

According to Gane Ka-Shu Wong, co-investigator of the study, “This is one of the most important events in the evolution of life on this planet - without which we as a species would not exist...The movement of life from water to land - called terrestrialization - began with plants and was followed by animals and then, of course, humans. This study establishes how that first step took place (University of Alberta: 2019).”

Freshwater algae typically live in water. As water levels vary, they are often forced to live in drier environments too where soil bacteria also live. Needing to adapt in this way leads to genetic variance. Thus, researchers searched for algae in these environments to understand at what point gene mutations and adaptations first occurred in algae during their transition from water to land.

Towards this end, they eventually found a single-celled organism accustomed to living on rocks, more often dry than wet. A new species of Spirogloea Muscicola, an analysis of its DNA showed that it had a cluster of genes that made it closely related to land plants too. When searching DNA databases to find out where these genes may have originated from, they found that soil bacteria was the only possibility (Chung: 2019). But how?

Most claims of horizontal gene transfers between bacteria and more complex organisms are disputed as contamination (Pennisi: 2019). However, from studying the Spirogloea’s behavior with soil bacteria, the researchers found that it can indeed “eat” soil bacteria, and effectively integrate its DNA into its own. Analyzing the alga’s genome after having consumed soil bacteria, they found that both genomes became intertwined, as marked by their interruption by chunks of DNA known as “introns”, which, although common among the genes of complex organisms, don’t exist in bacteria (Chung: 2019). 

This is a surprising finding given that horizontal gene transfer was previously believed to only occur among bacteria. According to Andrew Roger, an evolutionary biologist at Dalhousie University, Canada, “This finding coupled with a number of other recent findings within other major kingdoms of eukaryotes (organisms with complex cells) shows that it (horizontal gene transfer) truly is an important mechanism by which complex life evolves (ibid.)."


 

Sources 

University of Alberta
Chung, Emily: CBC News

Pennisi, Elizabeth: Science Mag

 

About the Author
  • Science writer with keen interests in technology and behavioral biology. Her current focus is on the interplay between these fields to create meaningful interactions, applications and environments.
You May Also Like
APR 29, 2020
Microbiology
Bacteria Exposed to Antibiotics are 'Primed' to Gain More Resistance
APR 29, 2020
Bacteria Exposed to Antibiotics are 'Primed' to Gain More Resistance
Antibiotics are critical drugs that have saved millions of lives, but bacteria can also gain resistance to them, renderi ...
MAY 22, 2020
Genetics & Genomics
ALK - The Skinny Gene?
MAY 22, 2020
ALK - The Skinny Gene?
Some people have to count calories and exercise regularly to be skinny while others can consume whatever they want and n ...
JUN 14, 2020
Genetics & Genomics
Denisovan DNA Influences the Immune System of Oceanian People
JUN 14, 2020
Denisovan DNA Influences the Immune System of Oceanian People
As species in the genus homo evolved, our ancient ancestors interbred with populations of Neanderthals and Denisovans.
JUN 27, 2020
Microbiology
Learning More About How Bacteria Become Dangerous
JUN 27, 2020
Learning More About How Bacteria Become Dangerous
We have to share the world with microbes; they can grow almost anywhere, from hydrothermal vents deep in the sea, to the ...
AUG 04, 2020
Genetics & Genomics
A Hybrid Animal - the Sturddlefish - Is Created
AUG 04, 2020
A Hybrid Animal - the Sturddlefish - Is Created
Scientists, for reasons that are unclear, mixed eggs and sperm from two different species of fish and ended up creating ...
AUG 11, 2020
Neuroscience
Personality Traits Inherited Within 2 Generations
AUG 11, 2020
Personality Traits Inherited Within 2 Generations
By selectively breeding zebrafish, researchers from the Max Planck Institute have found that distinct personality traits ...
Loading Comments...