NOV 24, 2019 8:56 AM PST

Plants Moved to Land by Stealing Genes from Soil Bacteria

WRITTEN BY: Annie Lennon

Algae were the first pants on earth, and they lived underwater. How they managed to move onto land was largely a mystery, until now. By studying the genome of an unusual alga, an international group of scientists have discovered that to move to land, algae “stole” better-adapted genes from soil bacteria. 

According to Gane Ka-Shu Wong, co-investigator of the study, “This is one of the most important events in the evolution of life on this planet - without which we as a species would not exist...The movement of life from water to land - called terrestrialization - began with plants and was followed by animals and then, of course, humans. This study establishes how that first step took place (University of Alberta: 2019).”

Freshwater algae typically live in water. As water levels vary, they are often forced to live in drier environments too where soil bacteria also live. Needing to adapt in this way leads to genetic variance. Thus, researchers searched for algae in these environments to understand at what point gene mutations and adaptations first occurred in algae during their transition from water to land.

Towards this end, they eventually found a single-celled organism accustomed to living on rocks, more often dry than wet. A new species of Spirogloea Muscicola, an analysis of its DNA showed that it had a cluster of genes that made it closely related to land plants too. When searching DNA databases to find out where these genes may have originated from, they found that soil bacteria was the only possibility (Chung: 2019). But how?

Most claims of horizontal gene transfers between bacteria and more complex organisms are disputed as contamination (Pennisi: 2019). However, from studying the Spirogloea’s behavior with soil bacteria, the researchers found that it can indeed “eat” soil bacteria, and effectively integrate its DNA into its own. Analyzing the alga’s genome after having consumed soil bacteria, they found that both genomes became intertwined, as marked by their interruption by chunks of DNA known as “introns”, which, although common among the genes of complex organisms, don’t exist in bacteria (Chung: 2019). 

This is a surprising finding given that horizontal gene transfer was previously believed to only occur among bacteria. According to Andrew Roger, an evolutionary biologist at Dalhousie University, Canada, “This finding coupled with a number of other recent findings within other major kingdoms of eukaryotes (organisms with complex cells) shows that it (horizontal gene transfer) truly is an important mechanism by which complex life evolves (ibid.)."


 

Sources 

University of Alberta
Chung, Emily: CBC News

Pennisi, Elizabeth: Science Mag

 

About the Author
  • Annie graduated from University College London and began traveling the world. She is currently a writer with keen interests in genetics, psychology and neuroscience; her current focus on the interplay between these fields to understand how to create meaningful interactions and environments.
You May Also Like
JAN 06, 2020
Genetics & Genomics
JAN 06, 2020
Some Genetic Sequencing Tests Are Coming Up Short
If it's suspected that a person has a genetic disease, doctors might send the patient's DNA for sequencing. But some sequencing tests may not be checking thoroughly....
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
FEB 16, 2020
Genetics & Genomics
FEB 16, 2020
West African Genomes Reveal 'Ghost' Population
A group of ancient humans that has never been identified has been revealed not through fossils, but with modern DNA....
FEB 27, 2020
Cell & Molecular Biology
FEB 27, 2020
Caloric Restriction Changes Gene Expression, Reduces Inflammation
New research has added to the evidence that suggests that dietary restriction has health benefits....
MAR 24, 2020
Clinical & Molecular DX
MAR 24, 2020
Ultra sensitive cancer diagnostic detects DNA "fingerprints" in liquid biopsies
  Researchers from the Broad and Dana-Farber Cancer Institutes have developed a diagnostic technology that can monitor for the presence of recurring c...
MAR 31, 2020
Cell & Molecular Biology
MAR 31, 2020
A Genetic Edit Shields Cells That Are Usually Destroyed by Type 1 Diabetes
Diabetes is a disorder in which the body cannot properly regulate blood sugar levels because of a problem with insulin....
Loading Comments...