JAN 06, 2020 7:30 AM PST

Some Genetic Sequencing Tests Are Coming Up Short

WRITTEN BY: Carmen Leitch

If doctors suspect that a person has a genetic disease, it’s become straightforward to simply sequence all the coding regions of the individual’s genome; what used to be an incredibly time-consuming and laborious process has now become a more routine part of healthcare. This is especially true for young children and infants that have mysterious illnesses that probably have a genetic cause. However, new research has suggested that this sequencing methodology, called whole exome sequencing, may be missing large portions of protein-coding DNA, and may be impeding doctors from making a proper diagnosis.

A re-analysis of clinical tests from three major U.S. laboratories showed whole exome sequencing routinely failed to adequately analyze large segments of DNA. UT Southwestern experts who conducted the review say the findings are indicative of a widespread issue for clinical laboratories. / Credit: UTSW

This study, which was reported in Clinical Chemistry, showed that labs performing whole exome sequencing tended to analyze less than three-quarters of coding genes, and showed that there are large gaps in their diagnostic abilities for certain diseases. The study authors are concerned about how the quality of genetic testing is being documented.

"Many of the physicians who order these tests don't know this is happening," said Jason Park, M.D., Ph.D., associate professor of pathology at UT Southwestern. "Many of their patients are young kids with neurological disorders, and they want to get the most complete diagnostic test. But they don't realize whole exome sequencing may miss something that a more targeted genetic test would find."

There are around 20,000 genes that code for protein in the genome, which only makes up about two percent of our genetic material. However, analyzing all of those genes completely is challenging, and there may be oversights, noted Park. About half of whole exome sequencing analyses don’t find a genetic mutation carried by the patient, and this study may help show why.

After reassessing exome testing for 36 patients, done between 2012 and 2016 at three national laboratories, the researchers found big differences. A ‘completely analyzed’ gene would have had its coding region sequenced at least twenty times per test. The study showed that less that 1.5 percent of genes were completely analyzed in the 36 samples. In one lab, at least 28 percent of genes weren’t completely analyzed, and only five percent definitely were. Another lab had completely analyzed only 27 percent of genes. 

"And things really start to fall apart when you start thinking about using these tests to rule out a disease," Park said. "A negative exome result is meaningless when so many of the genes are not thoroughly analyzed."

Every lab had a different chance of diagnosing an epileptic disorder. One lab was checking most epilepsy-related genes in most patients, although three of their patient samples had only covered around 40 percent of those genes. Another lab was checking only about 20 percent of those genes completely. 

"When we saw this data we made it a regular practice to ask the labs about coverage of specific genes," said the corresponding study author Garrett Gotway, M.D., Ph.D., a clinical geneticist at UT Southwestern. "I don't think you can expect complete coverage of 18,000 genes every time, but it's fair to expect 90 percent or more."

Other work has revealed similar problems with a different kind of sequencing tool, whole genome sequencing. The researchers are hopeful that more clinicians will demand better testing standards for their patients.

"Clinical exomes can be helpful in complex cases, but you probably don't need one if a kid has epilepsy and doesn't have other complicating clinical problems," Gotway said. "There's a decent chance the exome test will come back negative and the parents are still left wondering about the genetic basis for their child's disease."

Gotway suggested that using genetic tests that focus on a panel of disease-related genes that are appropriate for a patient may be a better way to look for a disease-causing mutation. These tests can be less expensive and better at revealing genetic errors that cause disease.


Sources: AAAS/Eurekalert! via UT Southwestern Medical Center, Clinical Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 16, 2021
Clinical & Molecular DX
What Dead Cells Can Tell Us About Our Health
FEB 16, 2021
What Dead Cells Can Tell Us About Our Health
Taking a sample of tissue called a biopsy from an organ suspected of harboring a pathology is a common diagnostic practi ...
FEB 16, 2021
Genetics & Genomics
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
FEB 16, 2021
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
While people carry mostly the same genes, there are small differences in the sequences of those genes that can have prof ...
MAR 06, 2021
Genetics & Genomics
Green Tea Extract Can Affect Facial Development in Kids With Down Syndrome
MAR 06, 2021
Green Tea Extract Can Affect Facial Development in Kids With Down Syndrome
Individuals with Down syndrome often have certain facial features. New research has suggested that green tea supplements ...
MAR 21, 2021
Genetics & Genomics
Deciphering How Some Environmental Influences Affect Development
MAR 21, 2021
Deciphering How Some Environmental Influences Affect Development
We know that there are certain substances that can harm a developing fetus, like alcohol or lead. Some health conditions ...
APR 27, 2021
Genetics & Genomics
A Genetic Path Forward For Endangered Sumatran Rhinos
APR 27, 2021
A Genetic Path Forward For Endangered Sumatran Rhinos
There are fewer than 100 Sumatran rhinoceroses remaining in the world, making this animal one of the world's most endang ...
MAY 03, 2021
Microbiology
A New Bacterial Defense System is Discovered
MAY 03, 2021
A New Bacterial Defense System is Discovered
Most DNA that we're familiar with is found in cells in a double-stranded form. So, many years ago, scientists were intri ...
Loading Comments...