JAN 20, 2020 7:16 AM PST

Epigenetic Changes Make Breast Cancer Cells Drug Resistant

WRITTEN BY: Carmen Leitch

Changes in the epigenetics -  the modifiable chemical tags that can change the genome and gene expression - of breast cancer cells can make them resistant to drugs that are targeting them. This seems to happen to ER+ breast cancer cells, which make up around two of every three cases of breast cancer. This type of cancer can become resistant to the hormonal therapy used to treat it. Breast cancer relapse could be reduced, researchers suggested, if these epigenetic changes can be reversed.

Image credit: PIxabay

Reporting in Nature Communications, scientists have found that in ER+ breast cancer cells that resist treatment, the genome has been structurally rewired. This 3D change alters which genes are active or inactive.

"For the first time, we've revealed crucial 3D DNA interactions that are linked to whether or not a breast cancer is sensitive to hormone therapy," said the study leader Professor Susan Clark, the Genomics and Epigenetics Research Theme Leader at the Garvan Institute of Medical Research. "Understanding this process reveals new insights into how ER+ cancers evade hormone therapy, allowing them to grow uncontrolled."

Estrogen is a sex hormone that can bind to breast cancer cells, and inadvertently promote their growth. Hormone therapy aims to stop that from happening by blocking estrogen binding, and is often successful at reducing the relapse of the disease and stopping cancer growth. Unfortunately, cancer can develop resistance to this therapeutic approach.

"Treatment resistance is a significant health problem that leads to a third of all ER+ breast cancer patients on hormone therapy relapsing within fifteen years," said the first author of the study Dr. Joanna Achinger-Kawecka. "We are interested in epigenetic changes to DNA, the layer of instructions that organizes and regulates DNA's activity, that underpin the development of hormone resistance in breast cancer. Understanding these fundamental changes may help guide development of future treatments that either prevent resistance from developing, or reverse it once it has occurred."

The scientists compared the arrangement and interactions of DNA in ER+ breast cancer cells that were susceptible to hormone therapy to DNA from cells that were resistant.

"Between breast cancer cells that were still sensitive to hormone treatment and those that had developed resistance, we saw significant changes in 3D interactions of DNA regions that control gene activation, including at genes that control the estrogen receptor levels in the cells," said Dr. Achinger-Kawecka. "Further, we found that this 3D 'rewiring' occurred at DNA regions that were methylated, which is an epigenetic change that the team has already linked to hormone resistance."

Next, the scientists want to see if these genetic changes can be reversed with drugs that are already in clinical trials.

"Once ER+ breast cancer patients become resistant to hormone therapy, it is more difficult to treat," said Professor Clark (who discusses epigenetics in the video above). "We hope our research will help lead to combination treatments that allow women to take hormone therapy for longer, giving them better clinical outcomes."

Sources: AAAS/Eurekalert! via Garvan Institute of Medical Research, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 04, 2019
Cell & Molecular Biology
DEC 04, 2019
Scientists Reverse Cognitive Defects in Down Syndrome Mouse Model
Researchers have found a drug that can correct the memory and learning impairments that are linked to Down syndrome....
DEC 17, 2019
Cell & Molecular Biology
DEC 17, 2019
A New Tool for Assessing the Impact of Drugs on Single Cells
When scientists assess the impact of a treatment like a drug on cells, they usually generally rely on large populations of cells to find general trends....
DEC 21, 2019
Genetics & Genomics
DEC 21, 2019
Genetics are a Poor Predictor of Most Diseases
In recent years, genetic testing models have gained tremendous popularity from their ability to predict one’s risk factor for developing, or contract...
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Braveheart RNA Structure is Revealed For the First Time
Protein-coding genes only make up a small part of the genome. Much of the rest may contain long, non-coding RNA sequences....
FEB 17, 2020
Cancer
FEB 17, 2020
Listening in on cancer cells
Research published today in Nature Methods reports a new technique of “listening” to cancer cells. While it may sound odd (no pun intended...
FEB 23, 2020
Genetics & Genomics
FEB 23, 2020
Revealing More About the Genetic Mechanisms Underlying Down Syndrome
Down syndrome impacts around 6,000 live births in the US every year. Around 95% of affected individuals have a type called trisomy 21....
Loading Comments...