JAN 20, 2020 7:16 AM PST

Epigenetic Changes Make Breast Cancer Cells Drug Resistant

WRITTEN BY: Carmen Leitch

Changes in the epigenetics -  the modifiable chemical tags that can change the genome and gene expression - of breast cancer cells can make them resistant to drugs that are targeting them. This seems to happen to ER+ breast cancer cells, which make up around two of every three cases of breast cancer. This type of cancer can become resistant to the hormonal therapy used to treat it. Breast cancer relapse could be reduced, researchers suggested, if these epigenetic changes can be reversed.

Image credit: PIxabay

Reporting in Nature Communications, scientists have found that in ER+ breast cancer cells that resist treatment, the genome has been structurally rewired. This 3D change alters which genes are active or inactive.

"For the first time, we've revealed crucial 3D DNA interactions that are linked to whether or not a breast cancer is sensitive to hormone therapy," said the study leader Professor Susan Clark, the Genomics and Epigenetics Research Theme Leader at the Garvan Institute of Medical Research. "Understanding this process reveals new insights into how ER+ cancers evade hormone therapy, allowing them to grow uncontrolled."

Estrogen is a sex hormone that can bind to breast cancer cells, and inadvertently promote their growth. Hormone therapy aims to stop that from happening by blocking estrogen binding, and is often successful at reducing the relapse of the disease and stopping cancer growth. Unfortunately, cancer can develop resistance to this therapeutic approach.

"Treatment resistance is a significant health problem that leads to a third of all ER+ breast cancer patients on hormone therapy relapsing within fifteen years," said the first author of the study Dr. Joanna Achinger-Kawecka. "We are interested in epigenetic changes to DNA, the layer of instructions that organizes and regulates DNA's activity, that underpin the development of hormone resistance in breast cancer. Understanding these fundamental changes may help guide development of future treatments that either prevent resistance from developing, or reverse it once it has occurred."

The scientists compared the arrangement and interactions of DNA in ER+ breast cancer cells that were susceptible to hormone therapy to DNA from cells that were resistant.

"Between breast cancer cells that were still sensitive to hormone treatment and those that had developed resistance, we saw significant changes in 3D interactions of DNA regions that control gene activation, including at genes that control the estrogen receptor levels in the cells," said Dr. Achinger-Kawecka. "Further, we found that this 3D 'rewiring' occurred at DNA regions that were methylated, which is an epigenetic change that the team has already linked to hormone resistance."

Next, the scientists want to see if these genetic changes can be reversed with drugs that are already in clinical trials.

"Once ER+ breast cancer patients become resistant to hormone therapy, it is more difficult to treat," said Professor Clark (who discusses epigenetics in the video above). "We hope our research will help lead to combination treatments that allow women to take hormone therapy for longer, giving them better clinical outcomes."

Sources: AAAS/Eurekalert! via Garvan Institute of Medical Research, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 27, 2020
Genetics & Genomics
MAR 27, 2020
Expanding the Genomic Regions That Can Be Targeted With CRISPR
CRISPR gene-editing technology has sparked a revolution in biomedical research and is poised to have far-reaching applic ...
APR 09, 2020
Cell & Molecular Biology
APR 09, 2020
A Model of Spinal Development Provides Insight Into Disease
The spinal column develops from a row of structures called somites, which bud off sequentially in a process called somit ...
MAY 26, 2020
Neuroscience
MAY 26, 2020
Alzheimer's Gene Doubles Risk of Severe COVID-19
Researchers from the University of Exeter, England, and the University of Connecticut have found that people carrying fa ...
JUN 15, 2020
Genetics & Genomics
JUN 15, 2020
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder, in which the immune system attacks an insulating sheath that coats ne ...
JUN 22, 2020
Genetics & Genomics
JUN 22, 2020
People That Acquire Genetic Mutations Faster May Not Live as Long
Every cell in our boy carries a copy of the genome in its nucleus. Some cells are constantly replenished, and the genome ...
JUN 28, 2020
Genetics & Genomics
JUN 28, 2020
Low-Level Chemical Exposure Causes Heritable Changes in Fish
Scientists used a fish called the inland silverside, Menidia beryllina, to show that even small amounts of chemicals tha ...
Loading Comments...