JAN 20, 2020 7:16 AM PST

Epigenetic Changes Make Breast Cancer Cells Drug Resistant

WRITTEN BY: Carmen Leitch

Changes in the epigenetics -  the modifiable chemical tags that can change the genome and gene expression - of breast cancer cells can make them resistant to drugs that are targeting them. This seems to happen to ER+ breast cancer cells, which make up around two of every three cases of breast cancer. This type of cancer can become resistant to the hormonal therapy used to treat it. Breast cancer relapse could be reduced, researchers suggested, if these epigenetic changes can be reversed.

Image credit: PIxabay

Reporting in Nature Communications, scientists have found that in ER+ breast cancer cells that resist treatment, the genome has been structurally rewired. This 3D change alters which genes are active or inactive.

"For the first time, we've revealed crucial 3D DNA interactions that are linked to whether or not a breast cancer is sensitive to hormone therapy," said the study leader Professor Susan Clark, the Genomics and Epigenetics Research Theme Leader at the Garvan Institute of Medical Research. "Understanding this process reveals new insights into how ER+ cancers evade hormone therapy, allowing them to grow uncontrolled."

Estrogen is a sex hormone that can bind to breast cancer cells, and inadvertently promote their growth. Hormone therapy aims to stop that from happening by blocking estrogen binding, and is often successful at reducing the relapse of the disease and stopping cancer growth. Unfortunately, cancer can develop resistance to this therapeutic approach.

"Treatment resistance is a significant health problem that leads to a third of all ER+ breast cancer patients on hormone therapy relapsing within fifteen years," said the first author of the study Dr. Joanna Achinger-Kawecka. "We are interested in epigenetic changes to DNA, the layer of instructions that organizes and regulates DNA's activity, that underpin the development of hormone resistance in breast cancer. Understanding these fundamental changes may help guide development of future treatments that either prevent resistance from developing, or reverse it once it has occurred."

The scientists compared the arrangement and interactions of DNA in ER+ breast cancer cells that were susceptible to hormone therapy to DNA from cells that were resistant.

"Between breast cancer cells that were still sensitive to hormone treatment and those that had developed resistance, we saw significant changes in 3D interactions of DNA regions that control gene activation, including at genes that control the estrogen receptor levels in the cells," said Dr. Achinger-Kawecka. "Further, we found that this 3D 'rewiring' occurred at DNA regions that were methylated, which is an epigenetic change that the team has already linked to hormone resistance."

Next, the scientists want to see if these genetic changes can be reversed with drugs that are already in clinical trials.

"Once ER+ breast cancer patients become resistant to hormone therapy, it is more difficult to treat," said Professor Clark (who discusses epigenetics in the video above). "We hope our research will help lead to combination treatments that allow women to take hormone therapy for longer, giving them better clinical outcomes."

Sources: AAAS/Eurekalert! via Garvan Institute of Medical Research, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 28, 2020
Cancer
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
AUG 28, 2020
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
Genome repair is one of the big-ticket research areas for the future of medicine. CRISPR-Cas9 systems can edit the genom ...
SEP 21, 2020
Neuroscience
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
SEP 21, 2020
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
Cavefish are fish that dwell in caves, unable to access the outside world. Often, they were separated from their closest ...
OCT 18, 2020
Genetics & Genomics
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
OCT 18, 2020
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
The pandemic virus SARS-CoV-2 is thought to have originated in bats, like many viruses. To make the leap and infect anot ...
NOV 03, 2020
Cell & Molecular Biology
The Connections Between Toxins, Genes, and Disease
NOV 03, 2020
The Connections Between Toxins, Genes, and Disease
We are exposed to a vast array of chemicals every day. Many are harmless or even important, like the air we breathe, wat ...
NOV 10, 2020
Immunology
Genetic Profiling Reveals How Ebola Puts Immune Cells in a Chokehold
NOV 10, 2020
Genetic Profiling Reveals How Ebola Puts Immune Cells in a Chokehold
In the middle of 2020, yet another deadly Ebola outbreak was reported in the Democratic Republic of the Congo - the 11th ...
NOV 10, 2020
Genetics & Genomics
Learning More About the Causes of Preeclampsia
NOV 10, 2020
Learning More About the Causes of Preeclampsia
Preeclampsia is a complication of pregnancy characterized by high blood pressure and it arises in anywhere from two to e ...
Loading Comments...