JAN 20, 2020 6:50 AM PST

Microbes Create a More Sustainable Building Material

WRITTEN BY: Carmen Leitch

Concrete is the second most widely consumed resource on the planet (after water), and it has a massive carbon footprint. It's been estimated that concrete is responsible for about eight percent of the world's carbon dioxide emissions. Scientists have now taken a step towards more sustainable construction by creating a way to use microorganisms to make building materials.

Live building materials can be sculpted into various shapes and sizes. / Credit: CU Boulder College of Engineering & Applied Science

In this research, the scientists engineered a scaffold from sand and a hydrogel that retains moisture, contains nutrients, and serves as a bacterial growth environment. The bacteria in that hydrogel then multiply and release calcium carbonate, which is also the main ingredient of cement. That acts to mineralize the gel and bind the sand. Thus, a brick is created. The work has been reported in the journal Matter.

"We use photosynthetic cyanobacteria to biomineralize the scaffold, so it actually is really green. It looks like a Frankenstein-type material. That's exactly what we're trying to create: something that stays alive," said the senior author study Wil Srubar, head of the Living Materials Laboratory at the University of Colorado Boulder. "It's a lot like making rice crispy treats where you toughen the marshmallow by adding little bits of hard particles."

Because these bricks are made of live materials, they can also be broken in half so additional bricks can be made with the addition of hydrogel, sand, and nutrients. The team was able to use one brick to generate up to eight bricks over three generations.

"What we're really excited about is that this challenges the conventional ways in which we manufacture structural building materials," said Srubar. "It really demonstrates the capability of exponential material manufacturing."

The bricks have to be dried out completely to have structural integrity, but the microbes can't lose too much water. Humidity and temperature can be altered based on whether the material is dormant or has to be used structurally.

"This is a material platform that sets the stage for brand new exciting materials that can be engineered to interact and respond to their environments," said Srubar. "We are just trying to bring building materials to life, and I think that is the nugget in this whole thing. We're just scratching the surface and laying the foundation of a new discipline. The sky is the limit."

This type of material might be useful if we have to construct habitats on places like Mars, for example. "In austere environments, these materials would perform especially well because they use light from the sun to grow and proliferate with very little exogenous material needed for their growth," Srubar explained. "It's going to happen one way or another, and we're not going to be trucking bags of cement all the way to Mars. I really do think that we'll be bringing biology with us once we go."

 


Sources: AAAS/Eurekalert! Via Cell Press, University of Colorado at Boulder, Matter

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 13, 2020
Microbiology
APR 13, 2020
Even Bacteria Align With the Daily Cycle of Day and Night
The majority of living organisms on Earth have adapted in some way to the daily cycle of night and day.
APR 15, 2020
Immunology
APR 15, 2020
How Malaria Protects Itself from the Immune System
A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoidi ...
APR 16, 2020
Health & Medicine
APR 16, 2020
Structural Basis of Receptor Recognition by SARS-CoV-2
As mortality and infection rates rise globally, it appears that SARS-CoV-2, the virus responsible for the COVID-19 pande ...
MAY 25, 2020
Microbiology
MAY 25, 2020
Assessing the Risk of COVID-19 Posed by Various Summer Activities
While we know a lot more about the pandemic virus SARS-CoV-2 and the illness it causes, COVID-19, there are still many u ...
JUN 22, 2020
Cell & Molecular Biology
JUN 22, 2020
Viruses Can Create New Genes By Stealing Bits of Human DNA
When viruses infect cells, they hijack the machinery inside and start to use it for their own purposes. This enables vir ...
JUN 24, 2020
Neuroscience
JUN 24, 2020
Prenatal Stress May Influence Infant Gut Bacteria
Although prenatal stress has previously been associated with infant growth and development, exactly how they are linked ...
Loading Comments...