JAN 24, 2020 6:31 PM PST

As Sperm Mature, They Scan Their DNA and Repair Errors They FInd

WRITTEN BY: Carmen Leitch

Researchers have learned that when sperm cells mature, they activate many of their genes, which enables a repair process to take place; errors in their DNA are fixed during this time. Reporting in Cell, the scientists determined that like many other species including fruit flies, birds, and mice, human sperm cells also turn about 90 percent of their genes on while they mature. For comparison, cells that are part of an organ use around 60 percent of their genes at any given time to perform their functions. Since sperm cells have to divide and multiply over a lifetime, they can accumulate genetic errors over those many cell cycles. This scanning is especially important for them, which are passing their genes to another generation.

Image credit: Pixabay

"It now seems obvious that sperm activate so many more genes as they develop because doing so runs them through a DNA repair process, and protects the integrity of messages about to be inherited," said the senior author of the study, Itai Yanai, Ph.D., director of the Institute for Computational Medicine at NYU Langone Health. "We also found that such repair in sperm is less active in genes that are activated, or transcribed, less often. This supports the theory that evolution is using transcription frequency as a lever, dialing it up to preserve the DNA code in some genes, but turning it down to enable changes elsewhere when it contributes to survival."

Exceptions to this activation and repair process included genes related to immunity, which must be able to continue to evolve in order to fight off infectious pathogens.

In this work, the researchers assessed the patterns of gene expression in single cells as sperm matured, using human testes tissue samples from volunteers. They compared this information with human genetic databases to find out how often repairs take place in any given gene. Genes that were turned on just a few times as sperm matured ended up with 15 to 20 percent fewer sequence errors compared to genes that remained off.

The genetic repair involves a process called transcription-coupled repair (TCR), which typically makes quick fixes to DNA before it is transcribed into RNA. It's critical that RNA carries the correct code; that is the molecule that is used to make proteins based on its sequence. TCR can help ensure that errors in the genetic code don't disrupt a protein's function. In sperm, however, TCR is applied to many more genes than usual, and through an as-yet-unknown mechanism, they prevent proteins from being made.

Now the researchers are interested in whether genetic changes that are inherited from sperm are found more often in genes that are not turned on while sperm mature. The children of aging fathers are at greater risk for some genetic diseases; this and future work can help explain why.

"Survival of the fittest is a foundation of evolutional theory, but what if other mechanisms bias which gene types are more susceptible to change before natural selection can act on them?" asks first author Bo Xia, a graduate candidate in Yanai's lab. "Such a bias in the testes would have a dramatic effect, but only over evolutionary time scales, say millions of years."

The lecture in the video above features Professor Yanai.

Sources: AAAS/Eurekalert! via NYU Langone Health / NYU School of Medicine, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 11, 2019
Genetics & Genomics
DEC 11, 2019
The Cause of a New Autoimmune Disease is Discovered
Researchers have discovered a new autoinflammatory disease, which they have called CRIA (cleavage-resistant RIPK1-induced autoinflammatory) syndrome....
DEC 18, 2019
Genetics & Genomics
DEC 18, 2019
Learning More About The Genetic Adaptations Cancer Relies On
Cancer cells can adapt to mutations in the genome that might kill the cells by altering the activity of their genes....
JAN 04, 2020
Genetics & Genomics
JAN 04, 2020
Testing Gene Therapy as a Potential Treatment for CTE
Chronic traumatic encephalopathy (CTE) is caused by repeated trauma to the head, like a boxer, football player, or soldier might experience....
JAN 16, 2020
Genetics & Genomics
JAN 16, 2020
Sequence the Kraken! The Genome of the Giant Squid is Revealed
Giant squid, which can weigh over 900 kilograms and grow to thirteen meters, are the stuff of legend....
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Epigenetic Changes Make Breast Cancer Cells Drug Resistant
Researchers have found that changes in the structure of the genome in breast cancer cells can make them resistant to drug therapies....
FEB 03, 2020
Neuroscience
FEB 03, 2020
Genetic Characterization of Bipolar Disorders, Major Depressive Disorder
Mood disorders, like Bipolar, Major Depressive Disorder, and Schizophrenia, among others, are difficult to define clinically.  Unlike disorders that a...
Loading Comments...