FEB 25, 2020 7:28 AM PST

Improving Gene Therapy With Plant-Based Relatives of Cholesterol

WRITTEN BY: Carmen Leitch

Genetic diseases often result from small errors in individual genes, so if those erroneous genes could be replaced or supplemented with the right version of the gene, the disease would theoretically be cured. However, that's much easier said than done. One reason is because it's difficult to get a corrected, therapeutic version of a gene where it needs to be in cells. New research can help change that.

If nanoparticles that carry gene therapies contain molecules related to cholesterol that are derived from plants, they are able to get where they need to be more efficiently. The plant-based cholesterol relatives give the nanoparticles a shape that helps them move around with ease.  These findings have been reported in Nature Communications and may help make many gene therapies more effective.

Two years ago, an assistant professor of pharmaceutical sciences with the Oregon State University (OSU) College of Pharmacy, Gaurav Sahay, and colleagues at OSU and Oregon Health & Science University created an improved cystic fibrosis therapy that put a molecular medicine (RNA that coded for the correct version of the gene mutated in cystic fibrosis) on lipid-based nanoparticles. Nanoparticles loaded with mRNA triggers cells to use it to generate the right version of a protein coded for by that mRNA. In cystic fibrosis, that means that cells can then use a functional chloride channel and will regulate water transport correctly, improving respiratory function and relieving disease symptoms.

The nanoparticles used in this study have also been approved for use in the clinic. Cholesterol adds stability to nanoparticles that transport genetic material. Sahay and colleagues have now used plant-based analogs called phytosterols to serve the same purpose, with an added cardiovascular benefit. The phytosterols make the nanoparticles go from a spherical to a polyhedral shape, which enables them to move faster. The nanoparticles perform better when they can move faster, because they must get away from a cellular compartment called an endosome and get to the cytosol where they need to be.

"One of the biggest challenges in the delivery of genes is that less than two percent of the nanoparticles reach the cytosol," said Sahay. "If you up the dose to get more genes there, now you have problems with toxicity, plus the cost goes higher. But the nanoparticles' shape changes because of these naturally occurring cholesterol analogs, and the new shape helps them deliver genes better. The analogs boost gene delivery 10-fold and sometimes 200-fold."

False color scanning electron micrograph (250,000 times magnification) showing the gold nanoparticles created by NIST and the National Cancer Institute's Nanotechnology Characterization Laboratory (NCL) for use as reference standards in biomedical research laboratories. / Credit: Andras Vladar, NIST

Now, inhalable particles can be made that can get across barriers in the lungs of cystic fibrosis patients, and their treatments can be used with high efficacy, Sahay added.

Sources: AAAS/Eurekalert! via Oregon State University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 21, 2020
Genetics & Genomics
Controlling CRISPR Rapidly With Light
JUN 21, 2020
Controlling CRISPR Rapidly With Light
Researchers have been working on ways to use light to control the gene-editing tool CRISPR for several years.
JUN 27, 2020
Microbiology
Learning More About How Bacteria Become Dangerous
JUN 27, 2020
Learning More About How Bacteria Become Dangerous
We have to share the world with microbes; they can grow almost anywhere, from hydrothermal vents deep in the sea, to the ...
JUN 28, 2020
Genetics & Genomics
Low-Level Chemical Exposure Causes Heritable Changes in Fish
JUN 28, 2020
Low-Level Chemical Exposure Causes Heritable Changes in Fish
Scientists used a fish called the inland silverside, Menidia beryllina, to show that even small amounts of chemicals tha ...
AUG 11, 2020
Drug Discovery & Development
Scientists Discover Key Gene Behind Antibiotic Resistance
AUG 11, 2020
Scientists Discover Key Gene Behind Antibiotic Resistance
Scientists from Oxford University have shown that a single gene can make some strains of Staphylococcus aureus (the bact ...
SEP 14, 2020
Clinical & Molecular DX
Cell Line Authentication Using STR Analysis
SEP 14, 2020
Cell Line Authentication Using STR Analysis
Imagine you’re studying colon cancer using a colon cell line model. After three painstaking years of research, you ...
SEP 09, 2020
Cell & Molecular Biology
Why Liver Gene Therapies Have Not Worked & How to Improve Them
SEP 09, 2020
Why Liver Gene Therapies Have Not Worked & How to Improve Them
Diseases that are caused by errors in a gene might be cured if we could correct those errors, or genetic mutations.
Loading Comments...