FEB 25, 2020 7:28 AM PST

Improving Gene Therapy With Plant-Based Relatives of Cholesterol

WRITTEN BY: Carmen Leitch

Genetic diseases often result from small errors in individual genes, so if those erroneous genes could be replaced or supplemented with the right version of the gene, the disease would theoretically be cured. However, that's much easier said than done. One reason is because it's difficult to get a corrected, therapeutic version of a gene where it needs to be in cells. New research can help change that.

If nanoparticles that carry gene therapies contain molecules related to cholesterol that are derived from plants, they are able to get where they need to be more efficiently. The plant-based cholesterol relatives give the nanoparticles a shape that helps them move around with ease.  These findings have been reported in Nature Communications and may help make many gene therapies more effective.

Two years ago, an assistant professor of pharmaceutical sciences with the Oregon State University (OSU) College of Pharmacy, Gaurav Sahay, and colleagues at OSU and Oregon Health & Science University created an improved cystic fibrosis therapy that put a molecular medicine (RNA that coded for the correct version of the gene mutated in cystic fibrosis) on lipid-based nanoparticles. Nanoparticles loaded with mRNA triggers cells to use it to generate the right version of a protein coded for by that mRNA. In cystic fibrosis, that means that cells can then use a functional chloride channel and will regulate water transport correctly, improving respiratory function and relieving disease symptoms.

The nanoparticles used in this study have also been approved for use in the clinic. Cholesterol adds stability to nanoparticles that transport genetic material. Sahay and colleagues have now used plant-based analogs called phytosterols to serve the same purpose, with an added cardiovascular benefit. The phytosterols make the nanoparticles go from a spherical to a polyhedral shape, which enables them to move faster. The nanoparticles perform better when they can move faster, because they must get away from a cellular compartment called an endosome and get to the cytosol where they need to be.

"One of the biggest challenges in the delivery of genes is that less than two percent of the nanoparticles reach the cytosol," said Sahay. "If you up the dose to get more genes there, now you have problems with toxicity, plus the cost goes higher. But the nanoparticles' shape changes because of these naturally occurring cholesterol analogs, and the new shape helps them deliver genes better. The analogs boost gene delivery 10-fold and sometimes 200-fold."

False color scanning electron micrograph (250,000 times magnification) showing the gold nanoparticles created by NIST and the National Cancer Institute's Nanotechnology Characterization Laboratory (NCL) for use as reference standards in biomedical research laboratories. / Credit: Andras Vladar, NIST

Now, inhalable particles can be made that can get across barriers in the lungs of cystic fibrosis patients, and their treatments can be used with high efficacy, Sahay added.

Sources: AAAS/Eurekalert! via Oregon State University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 13, 2021
Genetics & Genomics
Explore Ways to Enhance Biomarker Discovery Research
MAY 13, 2021
Explore Ways to Enhance Biomarker Discovery Research
Enhance your existing research or discover new methods with a suite of NGS tools and techniques to find and characterize ...
MAY 13, 2021
Microbiology
The Gut Microbiome Was More Diverse in Ancient People
MAY 13, 2021
The Gut Microbiome Was More Diverse in Ancient People
What can we learn from a specimen of ancient poo? A lot, it turns out. Scientists have now reported their findings from ...
MAY 17, 2021
Neuroscience
Genetic Changes in Brain Immune System May Cause Psychosis
MAY 17, 2021
Genetic Changes in Brain Immune System May Cause Psychosis
The exact biological mechanisms behind psychosis, a condition that changes one’s perception of reality and often i ...
MAY 25, 2021
Genetics & Genomics
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
MAY 25, 2021
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
A disorder called 22q11.2 deletion syndrome (22q) affects about one in 2,000 births, and causes dysfunction in every org ...
JUN 13, 2021
Cell & Molecular Biology
The DNA Content of a Cell Helps Control Its Size
JUN 13, 2021
The DNA Content of a Cell Helps Control Its Size
Cells have to maintain the right size; bacterial and eukaryotic cells tend to have a characteristic size, but that may a ...
JUL 23, 2021
Earth & The Environment
RNA Alterations Boost Potato and Rice Crop Yields by 50%
JUL 23, 2021
RNA Alterations Boost Potato and Rice Crop Yields by 50%
Manipulating RNA could increase rice and potato crop yields by over 50%, according to a group of researchers from the Un ...
Loading Comments...