MAR 09, 2020 9:32 AM PDT

Researchers Alter How Bacteria Communicate

WRITTEN BY: Carmen Leitch

The bacterium Escherichia coli comes in many forms, and researchers have used a harmless strain of it to redesign how the microbes 'communicate' with one another. They did so by creating a genetic circuit that could be useful to synthetic biologists who want to use bacteria to generate molecules that are useful as drugs or valuable compounds, or as sensors of environmental conditions. The work has been reported in Nature Communications.

E. coli bacteria / Image credit: CDC/Evangeline Sowers, Janice Haney Carr

In nature, bacteria commonly live in a colony, and the members of that population can communicate with one another in a mechanism called quorum sensing. Small molecules made by the microbes in that community serve as messengers. Synthetic biologists can use this mechanism to control the actions of a bacterial colony. However, quorum sensing systems are very difficult to manipulate.

Researchers at the University of California San Diego have now created E. coli that won't communicate unless their environment contains a particular molecule. This "inducible quorum sensing system" is meant to give synthetic biologists better control over the communication mechanisms used by bacteria, and therefore, improve their efficiency.

"We hope that this system can increase control and safety of synthetic genetic circuits, and therefore facilitate their transition to real-life applications," said the first author of the study Arianna Miano, a UC San Diego bioengineering graduate student. She works in the lab of Jeff Hasty, a professor of bioengineering at the Jacobs School of Engineering and of biology in the Division of Biological Sciences.

In 2008, UC San Diego scientists altered quorum sensing in the photosynthetic bacterium Rhodopseudomonas palustris. The one they designed only works if the bacteria are given p-coumaric acid, which many fruits and vegetables contain. This work applied that design.

"The bacteria coordinate differently according to how much of the p-coumaric acid we provide in the media," said Miano. "If we give no p-coumaric acid, the bacteria can't communicate with each other, but when we provide them with medium concentrations they are able to signal and share information on the size of their colony. If we give them too much, they over-produce signaling molecules which tricks them into behaving as if they were always part of a large population."

The team added a lysis gene to the quorum sensing circuit they made. The lysis gene enables microbes to generate a molecule like a therapeutic, then break open at a certain location to deliver it. Now that the entire system can be regulated with certain molecules; the researchers have greater control, and can switch between periods in which cargo is delivered or not.

The bioengineers showed how different levels of p-coumaric acid could change the behavior of a bacterial population. The lysis gene was only activated, and thus the cargo was delivered only when the number of bacteria reached a certain point. When the levels of p-coumaric acid became extremely high, the bacteria produced so many lysis proteins the colony was destroyed.

"We have just scratched the surface of the potential of this communication system. We are excited to see the applications that will follow by coupling it to the expression of different genes," said Miano.

Sources: AAAS/Eurekalert! via University of California - San Diego, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 29, 2020
Genetics & Genomics
Why Two Similar Bacterial Toxins Cause Different Illnesses
JUN 29, 2020
Why Two Similar Bacterial Toxins Cause Different Illnesses
The microbial pathogens of the world have shown us how powerful they can be, most recently proven by the current pandemi ...
AUG 12, 2020
Genetics & Genomics
A Switch That Lets Worms Toggle Between Sexes
AUG 12, 2020
A Switch That Lets Worms Toggle Between Sexes
People typically think of gender in binary terms, but in the natural world, there are many examples of sexual fluidity.
AUG 15, 2020
Genetics & Genomics
How Dermatitis is Linked to Increased Risk of Food Allergies
AUG 15, 2020
How Dermatitis is Linked to Increased Risk of Food Allergies
Small changes in the genome can sometimes have a huge impact, and researchers have found two that increase the risk of e ...
AUG 28, 2020
Cancer
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
AUG 28, 2020
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
Genome repair is one of the big-ticket research areas for the future of medicine. CRISPR-Cas9 systems can edit the genom ...
SEP 04, 2020
Genetics & Genomics
Expanding Our View of How Gene Variants Affect Blood Cells
SEP 04, 2020
Expanding Our View of How Gene Variants Affect Blood Cells
Small changes in the sequences of some genes affect the characteristics of blood cells, and may contribute to an individ ...
SEP 21, 2020
Neuroscience
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
SEP 21, 2020
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
Cavefish are fish that dwell in caves, unable to access the outside world. Often, they were separated from their closest ...
Loading Comments...