MAR 09, 2020 10:32 AM PDT

Chlamydiae Bacteria are Found Deep in the Arctic Ocean

WRITTEN BY: Carmen Leitch

Over half of the fresh water on the planet is frozen in the ice sheets of Antarctica, with pools and streams of water flowing into one another inside and around the ice and the continent. This movement and the chemicals that are dissolved in it can reveal more about the relationship between nutrients on land and coastal life. Researchers have recently reported a study of samples from the Whillans Subglacial Lake in the West Antarctic in Global Biogeochemical Cycles.

"Life is tough -- it can handle a lot," said the lead study author Trista Vick-Majors, Assistant Professor of Biological Sciences at Michigan Technological University. "This paper is putting together what we know about the biology and how active it is under Antarctic ice with information about the composition of organic carbon in the lake."

For organisms beneath the thick ice of Antarctica there is no sunlight, and there is a lot of pressure from all of the ice on top of them. The temperature hovers around freezing. When a camera is put inside of a borehole in Mercer Subglacial Lake (near Whillans and shown in the video), however, it reveals a cold, dark lake falloff soft sediment and lined with bubbly ice.

This work may not only tell us more about life on our planet, it may also help us learn more about extraterrestrial life.

"There is water and there is life under the ice," Vick-Majors said. "These can teach us a lot about our planet because this is a great place to look at somewhat simplified ecosystems, without higher levels of organisms. So we can answer questions about life that can be really hard to answer in other places."

A different team of scientists has been studying microbial life deep in the Arctic Ocean near a deep-sea hydrothermal vent field called Loki's Castle. The area has no source of oxygen and no large life forms are found there. But unexpectedly, the researchers saw that many species of Chlamydiae bacteria had taken up residence there. The findings were reported in Current Biology.

 "Finding Chlamydiae in this environment was completely unexpected, and of course begged the question what on earth were they doing there?" noted the lead study author Jennah Dharamshi of Uppsala University in Sweden.

Image cropped from a computer-generated image of a group of Gram-negative, Chlamydia pneumoniae bacteria, based upon SEM imagery. / Credit: CDC/ Sarah Bailey Cutchin/Illustrators: Alissa Eckert; Robert Hobbs

These life forms can be very difficult to grow in the lab, so the scientists had to learn more by using genomic sequencing tools. They determined that the Chlamydiae they identified are closely related to those that cause disease in humans. They also suspect that because they found so much of this microbial life in the deep ocean, the microbes are having an impact on the ecosystem there, and potentially in other deep-sea environments that are low in oxygen.

 "Chlamydiae have likely been missed in many prior surveys of microbial diversity," suggested a study author on the Current Biology report, Daniel Tamarit of Wageningen University. "This group of bacteria could be playing a much larger role in marine ecology than we previously thought."


Sources: AAAS/Eurekalert! via Michigan Technological University, Global Biogeochemical Cycles, Wageningen University, Current Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 25, 2020
Microbiology
The Symbiotic Bacteria That Stow Away in Ship-Destroying Clams
MAY 25, 2020
The Symbiotic Bacteria That Stow Away in Ship-Destroying Clams
Shipworms are known as the 'termites of the sea.' They are not actually worms; these infamous mollusks that have brought ...
JUN 24, 2020
Neuroscience
Prenatal Stress May Influence Infant Gut Bacteria
JUN 24, 2020
Prenatal Stress May Influence Infant Gut Bacteria
Although prenatal stress has previously been associated with infant growth and development, exactly how they are linked ...
JUL 03, 2020
Cell & Molecular Biology
A Gut Pathogen Moves With Help From Its Environment
JUL 03, 2020
A Gut Pathogen Moves With Help From Its Environment
Campylobacter jejuni is a foodborne bacterial pathogen that causes millions of cases of food poisoning each year.
JUL 07, 2020
Cell & Molecular Biology
Anticancer Compound Found in Marine Bacteria
JUL 07, 2020
Anticancer Compound Found in Marine Bacteria
Bacteria live in symbiosis with many animals in the world. These tiny single-celled creatures often play crucial roles i ...
AUG 09, 2020
Cell & Molecular Biology
Link Between Ancient Cells Sheds Light on the Origins of Life
AUG 09, 2020
Link Between Ancient Cells Sheds Light on the Origins of Life
Microbes ruled the ancient world, and complex animals trace back to those unicellular organisms.
AUG 10, 2020
Microbiology
The Tuberculosis Pathogen Is Captured Infecting a Cell
AUG 10, 2020
The Tuberculosis Pathogen Is Captured Infecting a Cell
Tuberculosis is caused by a bacterium, and it can infect immune cells called macrophages in the lungs that would normall ...
Loading Comments...