SEP 22, 2015 3:52 PM PDT

Duke Develops Proteins That Assemble and Disassemble

WRITTEN BY: Ilene Schneider
Duke University scientists have figured out the genetic code that instructs proteins to either self-assemble or disassemble in response to environmental stimuli, such as changes in temperature, salinity or acidity. This provides a new platform for drug delivery systems and a completely different view of cellular functions. The study, which appears in Nature Materials, is reported in Bioscience Technology
Protein self-assemble or disassemble in response to environmental stimuli.
The advance represents the first time that scientists have reported the ability to create biological structures that are readily programmed to assemble and disassemble. Using this knowledge, researchers have opened new doors for designer proteins and investigations into nanotechnology, biotechnology and medical treatments.

Ashutosh Chilkoti, chair of the Department of Biomedical Engineering at Duke, explained, “The very simple design rules that we have discovered provide a powerful engineering tool for many biomedical and biotechnology applications. We can now, with a flick of a switch and a temperature jump, make a huge range of biological molecules that either assemble or disassemble.”

The Duke study looked at potential triggers that can cause protein structures to assemble or break apart, primarily focusing on heat. Protein-based structures that self-assemble when heated and remain stable inside of the bloodstream can be used in numerous applications. Structures exhibiting the opposite behavior have long eluded researchers, especially beyond the controlled environment of a chemistry laboratory.

As Felipe Garcia Quiroz, a former graduate student in Chilkoti’s laboratory and first author of the new study, explained, “Nobody has been able to make these kinds of materials with the degree of complexity that we have now demonstrated.”

Chilkoti’s laboratory has been designing self-assembling proteins for drug delivery systems for several years. By adding heat, these new packing materials assemble themselves and help to control where and when drugs are released inside the body through non-temperature-related mechanisms such as changes in acidity levels. The new discovery enables drugs to be encapsulated in protein cages that accumulate inside of a tumor and dissolve once heated. This would offer a more accurate way of delivering drugs, as well as a way to use the cages therapeutically.

According to Quiroz, “These packaging systems have always been inert, but now we can make these materials from bioactive components. Once the cages get there and deliver their cargo, they could break down into additional therapeutic agents. We can now design two things into one.”

The scientists say that the research also provides new insights into the everyday functions of cells. Since the laboratory identified the genetic sequences that encode this behavior, the researchers were able to point out a long list of human proteins that likely exhibit it.

“This paper shows the incredible richness of peptide sequences that already have this very simple switch,” Chilkoti concluded.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JAN 23, 2020
Cancer
JAN 23, 2020
The role of circular RNA in melanoma
New research published in the journal Cancer Cell investigates the role of circular RNAs in the spread of melanoma. Melanoma is a particularly aggressive c...
JAN 28, 2020
Genetics & Genomics
JAN 28, 2020
Developing a Gene Therapy to Treat Duchenne Muscular Dystrophy
Because of a genetic mutation, people that have Duchenne muscular dystrophy lack functional copies of a protein called dystrophin....
JAN 28, 2020
Cell & Molecular Biology
JAN 28, 2020
A Rare Genetic Disorder is Effectively Treated With Modified Stem Cells
A clinical trial used stem cell gene therapy to treat a rare genetic disorder called X-CGD. Image credit: UCLA Broad Stem Cell Research Center/Nature Medicine...
FEB 07, 2020
Genetics & Genomics
FEB 07, 2020
Mutations That Lead to Cancer May Occur Decades Before Diagnosis
As our cells age or divide, errors can accumulate in the genome they carry, which can lead to cancer, and a variety of environmental and genetic factors ca...
FEB 17, 2020
Genetics & Genomics
FEB 17, 2020
Engineering a Genome
Scientists are learning more about how to use the genetic code to make a synthetic genome with specific biological functions....
MAR 27, 2020
Genetics & Genomics
MAR 27, 2020
Expanding the Genomic Regions That Can Be Targeted With CRISPR
CRISPR gene-editing technology has sparked a revolution in biomedical research and is poised to have far-reaching applications in medicine....
Loading Comments...