SEP 22, 2015 03:52 PM PDT

Duke Develops Proteins That Assemble and Disassemble

WRITTEN BY: Ilene Schneider
Duke University scientists have figured out the genetic code that instructs proteins to either self-assemble or disassemble in response to environmental stimuli, such as changes in temperature, salinity or acidity. This provides a new platform for drug delivery systems and a completely different view of cellular functions. The study, which appears in Nature Materials, is reported in Bioscience Technology
Protein self-assemble or disassemble in response to environmental stimuli.
The advance represents the first time that scientists have reported the ability to create biological structures that are readily programmed to assemble and disassemble. Using this knowledge, researchers have opened new doors for designer proteins and investigations into nanotechnology, biotechnology and medical treatments.

Ashutosh Chilkoti, chair of the Department of Biomedical Engineering at Duke, explained, “The very simple design rules that we have discovered provide a powerful engineering tool for many biomedical and biotechnology applications. We can now, with a flick of a switch and a temperature jump, make a huge range of biological molecules that either assemble or disassemble.”

The Duke study looked at potential triggers that can cause protein structures to assemble or break apart, primarily focusing on heat. Protein-based structures that self-assemble when heated and remain stable inside of the bloodstream can be used in numerous applications. Structures exhibiting the opposite behavior have long eluded researchers, especially beyond the controlled environment of a chemistry laboratory.

As Felipe Garcia Quiroz, a former graduate student in Chilkoti’s laboratory and first author of the new study, explained, “Nobody has been able to make these kinds of materials with the degree of complexity that we have now demonstrated.”

Chilkoti’s laboratory has been designing self-assembling proteins for drug delivery systems for several years. By adding heat, these new packing materials assemble themselves and help to control where and when drugs are released inside the body through non-temperature-related mechanisms such as changes in acidity levels. The new discovery enables drugs to be encapsulated in protein cages that accumulate inside of a tumor and dissolve once heated. This would offer a more accurate way of delivering drugs, as well as a way to use the cages therapeutically.

According to Quiroz, “These packaging systems have always been inert, but now we can make these materials from bioactive components. Once the cages get there and deliver their cargo, they could break down into additional therapeutic agents. We can now design two things into one.”

The scientists say that the research also provides new insights into the everyday functions of cells. Since the laboratory identified the genetic sequences that encode this behavior, the researchers were able to point out a long list of human proteins that likely exhibit it.

“This paper shows the incredible richness of peptide sequences that already have this very simple switch,” Chilkoti concluded.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
How Liquid Biopsies Can Teach Us About Cancer Drug Resistance
Cancer patients often endure challenging treatment courses to shrink their tumors, but the tumors can make a powerful comeback....
DEC 15, 2019
Neuroscience
DEC 15, 2019
Rabbit Study Holds Answer for Why Women Orgasm
Despite our increasing knowledge of the human brain, evolution and general biological processes, one thing has remained a mystery: why females orgasm. Now,...
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
Using Genetics to Study the History of Rome
While archaeologists and historians have been studying Ancient Rome for many years, there are still things we don't know....
DEC 15, 2019
Neuroscience
DEC 15, 2019
Hiccups Key For Infant Brain Development
Although we know how we hiccup, why has remained a mystery for some time, with researchers suggesting it to be an evolutionary hangover from when our ances...
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
Why is Some Chicken So Chewy? Researchers Have an Answer
Some broiler chickens suffer from wooden breast syndrome, which causes their meat to turn chewy and hard. Birds with this disorder can't be sold....
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
A New Tool for Evaluating Millions of Genetic Sequences at Once
Gene sequencing technologies have created a wealth of data, and scientists can now do more with all that information....
Loading Comments...