APR 01, 2020 2:38 PM PDT

Using Modified Stem Cells, Researchers Make Old Mice Youthful Again

WRITTEN BY: Carmen Leitch

Scientists at the Stanford University School of Medicine were able to make old human cells revert to a younger state by expressing a few genes that function in embryonic development. Muscle stem cells were removed from elderly mice and gene expression in those cells was altered in the same way. After the cells were then transplanted back into the mice, their strength became youthful again. The findings have been reported in Nature Communications.

Image credit: Pixabay

This work took advantage of proteins called Yamanaka factors (named for the Nobel prize-winning researcher that identified them, Shinya Yamanaka, M.D., Ph.D.). These proteins can trigger adult cells to become stem cells that have the potential to differentiate into any cell type, and as such are called induced pluripotent stem (iPS) cells. When old human cells that were grown in culture briefly expressed Yamanaka factors at certain times, their gene expression patterns became indistinguishable from young cells.

"When iPS cells are made from adult cells, they become both youthful and pluripotent," said the senior study author Vittorio Sebastiano, Ph.D., assistant professor of obstetrics and gynecology and the Woods Family Faculty Scholar in Pediatric Translational Medicine. "We've wondered for some time if it might be possible to simply rewind the aging clock without inducing pluripotency. Now we've found that, by tightly controlling the duration of the exposure to these protein factors, we can promote rejuvenation in multiple human cell types."

In the Sebastiano lab, adult cells can be rewound to an embryonic state when researchers expose them repeatedly for about two weeks to proteins that play roles in early embryonic development. As this happens, chemical tags on their DNA fall away. These tags help control gene development, and cell identity.

Cells derived from elderly adults were treated this way and compared to cells from younger individuals that were untreated. There were signs in the gene expression patterns of the elderly cells that aging was reversing after only four days of treatment. The scientists also looked at specific epigenetic marks on the DNA, chemical tags called methyl groups that have been associated with aging. They found that treated cells looked to be an average of 1.5 to 3.5 years younger compared to untreated cells.

They also assessed cell functions impacted by aging, like metabolism, nutrient sensing, and waste disposal. "We saw a dramatic rejuvenation across all hallmarks but one in all the cell types tested," Sebastiano said. "But our last and most important experiment was done on muscle stem cells. Although they are naturally endowed with the ability to self-renew, this capacity wanes with age. We wondered, Can we also rejuvenate stem cells and have a long-term effect?"

These altered stem cells did indeed have a restorative effect, causing the elderly mice to regain their youthful strength.

"Although much more work needs to be done, we are hopeful that we may one day have the opportunity to reboot entire tissues," Sebastiano said. "But first we want to make sure that this is rigorously tested in the lab and found to be safe."

Sebastiano is featured in the video above at Undoing Aging 2019.

Sources: Science Daily via Stanford Medicine, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 16, 2020
Genetics & Genomics
Identifying Genetic Causes of Stillbirth
AUG 16, 2020
Identifying Genetic Causes of Stillbirth
Researchers want answers for the one in every hundred mothers that lose a child to stillbirth.
SEP 06, 2020
Genetics & Genomics
Climate Change Caused a Mastodon Migration
SEP 06, 2020
Climate Change Caused a Mastodon Migration
Around 11,000 years ago, megafauna of the earth began to go extinct. Mastodons were some of the largest land animals liv ...
SEP 27, 2020
Genetics & Genomics
There's More to the Y Chromosome Than We Knew
SEP 27, 2020
There's More to the Y Chromosome Than We Knew
While humans beings carry mostly the same genes on two copies of 23 chromosomes, the sex chromosomes are a bit different ...
OCT 24, 2020
Genetics & Genomics
Cord Blood Samples Reveal More About the Genetics of Autism
OCT 24, 2020
Cord Blood Samples Reveal More About the Genetics of Autism
The activity of genes in our genome is controlled by many factors, one of which are chemical tags or structural changes ...
OCT 25, 2020
Cell & Molecular Biology
Revealing More About the Genetics of Ewing Sarcoma
OCT 25, 2020
Revealing More About the Genetics of Ewing Sarcoma
Ewing sarcoma is a rare kind of cancer that tends to impact young people and occurs in bones or the tissue around them. ...
OCT 26, 2020
Genetics & Genomics
Does a 'Mismatch' Between Diet and Biology Cause Poor Health?
OCT 26, 2020
Does a 'Mismatch' Between Diet and Biology Cause Poor Health?
People that eat a 'paleo' diet operate under the idea that we should be eating more like our ancestors, and that metabol ...
Loading Comments...