JUL 23, 2020 5:04 PM PDT

A Human Protein Can Mutate SARS-CoV-2, But It Can Change Back

WRITTEN BY: Carmen Leitch

All over the world, the SARS-CoV-2 virus is under intense investigation by scientists, who are learning more about how infects people and the illness it causes, COVID-19. It's natural for genomes to acquire mutations as they proliferate, and one aspect of this research involves investigating how the SARS-CoV-2 genome might be mutating. Clinical samples that have been collected have enabled researchers to learn more about how the virus is changing it spreads through communities worldwide.

New work reported in Molecular Biology and Evolution has suggested that human proteins that attack the virus are also causing it to mutate as part of a defense strategy. Through natural selection, however, the virus has been able to change back. The work is outlined in the video.

In this work, the researchers assessed genomes from 15,000 samples of the virus collected around the globe. The SARS-CoV-2 virus has a genome made of RNA, so its genome is made up of the nucleotide bases C, G, A, and U.

"I have looked at mutational profiles for many organisms and they all show some sort of bias, but I've never seen one as strong and strange as this," said the senior study author Professor Laurence Hurst, Director of the Milner Centre for Evolution at the University of Bath.

They found that the U residues were mutating at a higher rate than the other bases. These mutations tended to create UU pairs in the sequence from CU and UC. A human protein called APOBEC is known to mutate viruses in this way. "It looks like mutation isn't random, but instead we are attacking the virus by mutating it," said Hurst.

The researchers wanted to understand the impact of these mutations. Their findings suggested that the virus was fighting these mutations. They used predictions to show that U should make up about 65 percent of residues, with 40 percent in UU pairs. In reality, however, the U content and UU pairs were actually far lower.

"This could be because the viruses that have too much U in them simply don't survive well enough to reproduce. We estimate that for every 10 mutations that we see, there are another six we never get to see because those mutant viruses are too poor at propagating," explained Hurst.

As viral genes are modified to increase their U content, they become less stable. There are also other human proteins that can attack U-rich viral sequences, so the mutations are probably disrupting SARS-CoV-2. These findings may help improve vaccine design by aiding in the creation of live but non-pathogenic, or attenuated viruses.

Colorized scanning electron micrograph of a cell showing morphological signs of apoptosis, infected with SARS-COV-2 virus particles (green), isolated from a patient sample. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. / Credit: NIAID

"Knowing what selection favors and disfavors in the virus is really helpful in understanding what an attenuated version should look like," said Hurst. "We suggest for example that increasing U content, as APOBEC does within our cells, would be a sensible strategy."

Sources: AAAS/Eurekalert! via University of Bath, Molecular Biology and Evolution

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 02, 2020
Genetics & Genomics
Denisovan DNA Recovered From the Tibetan Plateau
NOV 02, 2020
Denisovan DNA Recovered From the Tibetan Plateau
Denisovans were ancient hominins that were discovered only recently, and they had a wider range than previously known.
NOV 16, 2020
Genetics & Genomics
Hidden Genes in the SARS-CoV-2 Genome
NOV 16, 2020
Hidden Genes in the SARS-CoV-2 Genome
It's essential for organisms to use their genomes to make proteins, and the processes of transcription and translation a ...
DEC 06, 2020
Genetics & Genomics
New Epigenetic Signature Discovered in Zebrafish
DEC 06, 2020
New Epigenetic Signature Discovered in Zebrafish
Zebrafish are a great model organism for biomedical research. They generate large numbers of embryos that develop rapidl ...
DEC 31, 2020
Genetics & Genomics
One Sequence Produced a Multitude of Hemoglobin Genes
DEC 31, 2020
One Sequence Produced a Multitude of Hemoglobin Genes
Scientists can learn more about genes and their function by assessing them in different organisms. This kind of genetic ...
JAN 14, 2021
Genetics & Genomics
Identical Twins Aren't Exactly the Same
JAN 14, 2021
Identical Twins Aren't Exactly the Same
Identical, or monozygotic twins develop from one egg that splits into 2, so the embryos that develop independently from ...
JAN 20, 2021
Genetics & Genomics
Mutations in One Gene Can Lead to Cancer in Different Ways
JAN 20, 2021
Mutations in One Gene Can Lead to Cancer in Different Ways
Cancer and genetics are linked; for example, when a cell's genome accumulates mutations it can begin to divide uncon ...
Loading Comments...