OCT 11, 2020 6:40 AM PDT

Using Terahertz Waves to Control Gene Expression

WRITTEN BY: Carmen Leitch

Terahertz waves sit in the far-infrared/microwave portion of the electromagnetic spectrum and can be generated by powerful lasers. They have been used for various purposes, including the manipulation of cells, since they may not cause the damage that ultraviolet or infrared light can. Researchers have now found that terahertz light can alter gene expression in cells. The findings have been reported in Optics Letters, and they may open up new avenues in stem cell research and regenerative therapy.

Image credit: Pixabay

Researchers have now created a tool to investigate how human cells are impacted by exposure to terahertz pulses. The apparatus was developed by iCeMS micro-engineer Ken-Ichiro Kamei, physicist Hideki Hirori, and colleagues at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) and Tokai University in Japan. It places cells into tiny wells with the same area as the terahertz light.

Reporting in Optics Letters, the scientists used the device to apply terahertz radiation to induced pluripotent stem cells (iPSCs), which are adult skin or blood cells that have been reprogrammed genetically to have the identity of stem cells.

"Terahertz pulses can generate a strong electric field without touching or damaging cells," said Hirori. "We tested their effect on iPSCs and discovered that the activity of some gene networks changes as a result of terahertz light exposure."

The pulses were activating genes that play a role in the survival of motor neurons and mitochondrial function, while genes that function in cell differentiation were found to be deactivated by the terahertz pulses.

The investigators determined that zinc-dependent transcription factors were impacting these genes; the team suggested that the electric field created by the pulses can move the zinc ions that are inside cells, which changes the activity of the genes these transcription factors affect.

This work might aid in the creation of technology that can encourage iPSCs to differentiate into specific types of cells, which could enable therapies for many types of diseases.

Sources: AAAS/Eurekalert! via Kyoto University, Optics Letters

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 05, 2020
Genetics & Genomics
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
DEC 05, 2020
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
We've all learned about super-spreader events over the past year, but occasions where a large group of people gathers an ...
DEC 10, 2020
Genetics & Genomics
Finding a Way to Restore Memory Loss Caused by Alzheimer's
DEC 10, 2020
Finding a Way to Restore Memory Loss Caused by Alzheimer's
It's thought that by the year 2060, there will be 14 million Americans living with Alzheimer's disease.
DEC 25, 2020
Genetics & Genomics
An Improved Reference Genome for Better Research
DEC 25, 2020
An Improved Reference Genome for Better Research
In scientific research, it's crucial to make comparisons. Therefore, reliable standards and controls are essential for d ...
JAN 01, 2021
Genetics & Genomics
Common Brain Disorder Has a Genetic Influence
JAN 01, 2021
Common Brain Disorder Has a Genetic Influence
It's thought that as many as one in one hundred people are born with a brain disorder known as Chiari 1 malformation, bu ...
FEB 02, 2021
Genetics & Genomics
Using Genetic Tools to Find Treatment Options for PTSD
FEB 02, 2021
Using Genetic Tools to Find Treatment Options for PTSD
With genome-wide association studies, researchers have been able to link small variations in the genome to a greater (or ...
FEB 11, 2021
Genetics & Genomics
We Have More in Common With Our Fish Ancestors Than We Knew
FEB 11, 2021
We Have More in Common With Our Fish Ancestors Than We Knew
Long ago, aquatic animals adapted to live on land, and this initial group of land-dwelling vertebrates are known as tetr ...
Loading Comments...