OCT 11, 2020 6:40 AM PDT

Using Terahertz Waves to Control Gene Expression

WRITTEN BY: Carmen Leitch

Terahertz waves sit in the far-infrared/microwave portion of the electromagnetic spectrum and can be generated by powerful lasers. They have been used for various purposes, including the manipulation of cells, since they may not cause the damage that ultraviolet or infrared light can. Researchers have now found that terahertz light can alter gene expression in cells. The findings have been reported in Optics Letters, and they may open up new avenues in stem cell research and regenerative therapy.

Image credit: Pixabay

Researchers have now created a tool to investigate how human cells are impacted by exposure to terahertz pulses. The apparatus was developed by iCeMS micro-engineer Ken-Ichiro Kamei, physicist Hideki Hirori, and colleagues at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) and Tokai University in Japan. It places cells into tiny wells with the same area as the terahertz light.

Reporting in Optics Letters, the scientists used the device to apply terahertz radiation to induced pluripotent stem cells (iPSCs), which are adult skin or blood cells that have been reprogrammed genetically to have the identity of stem cells.

"Terahertz pulses can generate a strong electric field without touching or damaging cells," said Hirori. "We tested their effect on iPSCs and discovered that the activity of some gene networks changes as a result of terahertz light exposure."

The pulses were activating genes that play a role in the survival of motor neurons and mitochondrial function, while genes that function in cell differentiation were found to be deactivated by the terahertz pulses.

The investigators determined that zinc-dependent transcription factors were impacting these genes; the team suggested that the electric field created by the pulses can move the zinc ions that are inside cells, which changes the activity of the genes these transcription factors affect.

This work might aid in the creation of technology that can encourage iPSCs to differentiate into specific types of cells, which could enable therapies for many types of diseases.

Sources: AAAS/Eurekalert! via Kyoto University, Optics Letters

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 07, 2021
Genetics & Genomics
How Double-Stranded DNA May Play a Critical Role in Memory and Recall
JUL 07, 2021
How Double-Stranded DNA May Play a Critical Role in Memory and Recall
Breaks in DNA are typically associated with harmful conditions, and the cell has ways to repair this damage. But it's be ...
JUL 29, 2021
Genetics & Genomics
Can Cats Help Us Learn More About Genomic Dark Matter?
JUL 29, 2021
Can Cats Help Us Learn More About Genomic Dark Matter?
Cats have been a part of human society for thousands of years, and now scientists are suggesting that they could help pr ...
AUG 04, 2021
Cell & Molecular Biology
Consuming Too Much Sugar Could Disrupt the Cell's Powerhouses
AUG 04, 2021
Consuming Too Much Sugar Could Disrupt the Cell's Powerhouses
Both processed and prepared foods often contain high levels of sugar. It's thought that the average American eats almost ...
AUG 19, 2021
Cell & Molecular Biology
Brain Organoids Develop 'Eyes'
AUG 19, 2021
Brain Organoids Develop 'Eyes'
Since Shinya Yamanaka developed a method to create stem cells from regular adult skin cells using genetic reprogramming ...
SEP 08, 2021
Health & Medicine
Gene Linked to Endometriosis Could Lead to Non-Hormonal Treatment Options
SEP 08, 2021
Gene Linked to Endometriosis Could Lead to Non-Hormonal Treatment Options
Researchers from the University of Oxford found an association between neuropeptide S receptor 1 (NPSR1) gene variants a ...
SEP 11, 2021
Genetics & Genomics
New NIH Consortium Aims to Understand the Impact of Genetic Variants
SEP 11, 2021
New NIH Consortium Aims to Understand the Impact of Genetic Variants
Scientists sequenced most of the human genome abut two decades ago. It took many years to complete the project because o ...
Loading Comments...