DEC 02, 2014 12:00 AM PST

A Tale Of Two Studies

Two different research teams affiliated with the Broad Institute at Harvard and MIT have come up with startlingly similar findings on the genetic mutations that happen in certain blood cancers. Their findings have shown for the first time that the mutations that can cause leukemia, lymphoma and myleodysplastic syndrome can sometimes be detected years before the disease occurs.

Two teams studying somatic mutations discovered this pre-malignant state in the course of researching other diseases. While most research into cancer focuses on the genetic mutations present in advanced stages of the disease, these two projects looked at how genes mutate over long periods of time; these are acquired mutations, or somatic mutation.

Steven McCarroll, senior author of one of the papers looked at DNA samples from 12,000 patients diagnosed with Bipolar disorder and/or schizophrenia. McCarroll is an assistant professor of genetics at Harvard Medical School and director of genetics at the Broad's Stanley Center for Psychiatric Research. The samples were taken from adults who were not diagnosed with cancer and showed no symptoms of any type of cancer.

They found that somatic mutations were concentrated in a handful of genes all of which were cancer genes. Using electronic medical records to follow the patients' subsequent medical histories, this team was able to show that the patients studied were 13 times more likely to develop certain blood cancers. McCarroll's team conducted follow-up analyses on tumor samples from two patients who had progressed from this pre-malignant state to cancer. These genomic analyses revealed that the cancer had indeed developed from the same cells that had harbored the "initiating" mutations years earlier.

Benjamin Ebert, an associate member of the Broad Institute and associate professor at Harvard Medical School and Brigham and Women's Hospital, is the senior author of the other paper. Ebert's team had hypothesized that since blood cancers increase in frequency with age, that it was possible that the genes were mutating over the lifetime of the patient and that perhaps these mutations could be detected earlier. Using data originally collected for the study of Type 2 Diabetes, the team looked at 17,000 DNA samples and specifically studied all 160 genes known to be mutated in most blood malignancies. They found that somatic mutations in these genes did indeed increase the likelihood of developing cancer, and they saw a clear association between age and the frequency of these mutations. They also found that men were slightly more likely to have mutations than women, and Hispanics were slightly less likely to have mutations than other groups. Ebert's team also found a relationship between these somatic mutations and morbidity from other diseases such as diabetes, coronary disease and ischemic strokes, however more study is needed to firmly establish that link.

"The fact that both teams converged on strikingly similar findings, using very different approaches and looking at DNA from very different sets of patients, has given us great confidence in the results," said Giulio Genovese, a computational biologist at the Broad and first author of McCarroll's paper. "It has been gratifying to have this corroboration of each other's findings."
The findings will be presented on December 9, 2014 at the American Society of Hematology Annual Meeting in San Francisco.
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
MAY 03, 2020
Genetics & Genomics
Conspiracy Theories Surrounding the Origins of SARS-CoV-2
MAY 03, 2020
Conspiracy Theories Surrounding the Origins of SARS-CoV-2
The origin of SARS-CoV-2, the pandemic virus that causes COVID-19, has become politicized as leaders seek to place blame ...
JUN 01, 2020
Microbiology
The Most Common Marine Microbe Has a Virus in Its Genome
JUN 01, 2020
The Most Common Marine Microbe Has a Virus in Its Genome
Single-celled ocean microbes known as Pelagibacter or SAR11 make up about 25 percent of the plankton on the planet.
JUN 24, 2020
Microbiology
Genetic Variations Can Affect the Gut Microbiome
JUN 24, 2020
Genetic Variations Can Affect the Gut Microbiome
The small variations in the human genome aren't the only thing that make us unique. We also each carry communities of mi ...
JUL 06, 2020
Genetics & Genomics
Learning More About How Folds Form in the Developing Brain
JUL 06, 2020
Learning More About How Folds Form in the Developing Brain
The folds of the human brain are essential to its function, and improper folding has been linked to a variety of disorde ...
JUL 13, 2020
Genetics & Genomics
New Therapeutic Targets For Lupus Are Identified
JUL 13, 2020
New Therapeutic Targets For Lupus Are Identified
Advances in computational and genetic technologies have enabled scientists to search the genome to look for places where ...
JUL 19, 2020
Genetics & Genomics
Genetic Surveys Could Help Save Coral Reefs
JUL 19, 2020
Genetic Surveys Could Help Save Coral Reefs
Coral reefs are a significant source of biodiversity and may support up to 25% of life in the ocean. Corals around the w ...
Loading Comments...