APR 14, 2016 06:56 PM PDT

Chimeric Organisms During Early Embryonic Development

WRITTEN BY: Kara Marker
Chimeric organisms are ones that are made up of cells or tissues from more than one individual, most commonly thought of as bizarre animal combinations or science experiments. However, errors during human development can also lead to chimeric embryos, which in turn can lead to birth defects.
 
Interesting cases of human chimerism include a 1976 woman with two different blood types, and later a man who appeared phenotypically normal but who also carried feminine XX cells in his skin and other tissues (The-Scientist). While these ostentatious cases are indeed examples of chimerism, the effects of this developmental error are not always so forthcoming. Until genetic technology specific enough to detect chimerism in the DNA was developed, cases of chimerism were only recognized when people showed physical signs.
 
Bovine embryos were examined for abnormal chromosome segregation during development.
A new study from the Cold Spring Harbor Laboratory and KU Leuven, published in Genome Research, looks at the fine details of human genetic chimerism, described by The Scientist as an individual carrying two or more genetically distinct cell lines in different parts of his or her body. While scientists in the past knew that abnormal chromosome combinations, either from two eggs and one sperm or two sperm fertilizing a single egg, research from this new study shows that chimeric embryos can result from normal, error-free fertilization.
 
While not all cases of chimerism result in hermaphroditic embryos or hair and skin discoloration later in life, having different cell lines in the tissues and organs can seriously matter in situations like finding organ donors.
 
The current study involved scientists conducting in vitro fertilization (IVF) in cows to examine the various chromosomal changes that arise in single embryonic cells as a result of errors during early development. Scientists quickly saw a large percentage of embryos with at least one cell with whole or partial gains or losses of chromosomes.
 
The researchers used a method they developed themselves to examine chromosomal origins and other details, called haplarithmisis, from 23 embryos. Nearly 75 percent of these embryos had at least one cell containing partial or whole chromosome abnormalities. Additionally, 39 percent of all embryos experienced some sort of fertilization error that led to mutations in entire sets of embryos.
 
This study was the first to show that normal fertilization can result in chimeric embryos.
 
"Knowing this might occur may improve approaches for embryo selection and ultimately the success of IVF/preimplantation genetic diagnosis,” said senior author Joris Vermeesh, from KU Leuven.
 
 
Source: Cold Spring Harbor Laboratory
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 20, 2018
Immunology
NOV 20, 2018
Survival of the SCID Patient
A team of scientists reviewed over 600 SCID patients medical records to establish the relationship between genetics and survival rates....
NOV 24, 2018
Genetics & Genomics
NOV 24, 2018
Alzheimer's Researchers Detect Genetic Recombination in the Brain
Our genomic sequence is thought to remain the same throughout our lives. But new research has found evidence to the contrary....
DEC 01, 2018
Videos
DEC 01, 2018
Identifying Disease-causing Gene Mutations
Genetic diseases can be traced back to an error in a gene. This video explores how the process works....
DEC 21, 2018
Microbiology
DEC 21, 2018
How the Gut Microbiome Controls the Intestinal Immune System
The gut microbiome has many important functions, including helping us digest food. But it has to protect itself from the immune system....
JAN 06, 2019
Genetics & Genomics
JAN 06, 2019
Exploring the Impact of Extensive Newborn Screening
While the exact number now varies by state, newborns are screened for several diseases. Should we be doing more?...
JAN 16, 2019
Genetics & Genomics
JAN 16, 2019
Gene Therapy for a Leading Cause of Infant Death is Closer to Market
New treatments for some diseases can have extremely high price tags. One example is Zolgensma, which might cost $5 million per patient....
Loading Comments...