OCT 11, 2016 8:20 AM PDT

Pizza or a Cupcake? Finding a Genetic Basis for Food Preferences

WRITTEN BY: Jennifer Ellis
When faced with the choice of a hamburger and fries or a piece of strawberry shortcake, which would you choose?

We all have our own different tastes and food preferences. Some prefer salty snacks to sweet ones. Others wouldn’t think twice about ice cream over chips. There have always been arguments for a genetic basis for some food preference behaviors, but we haven’t been able to pinpoint any specific influencing pathway.
 
Successful food intake studies include leptin experiments on feeling full or remaining hungry after a meal but no real causation tests have been done relating behavioral food preference to specific genes. Dr. Sadaf Farooqi, professor of neuroscience at University of Cambridge, and her team have recently associated a gene discovered to cause food preference changes in mice to the same preferences in humans.
Drawing of the human brain, notice the location of the hypothalamus and brain stem. (National Institute for Aging)
Pathways in the hypothalamus, brainstem and mesolimbic system have been shown to play a crucial role in the regulation of eating behavior. Previous studies working on melanocortin-4-receptor (MC4R)-expressing neurons in the hypothalamus have associated MC4R mutations with inherited human obesity, though exact mechanisms had still yet to be determined.

Additional behavior studies demonstrate that melanocortin-4-receptor (MC4R)-expressing neurons in mice can modulate food intake and preference. Results suggest that mutations in MC4R lead to increased food consumption and preference for a high fat diet, as well as reduced consumption of high sugar foods. The outcome of these studies points to food preference as a genetically determined characteristic in certain cases of obesity. Dr. Farooqi set out to investigate the same behavior association in humans.

Farooqi and her team tested MC4R deficient individuals and found they were similar in phenotype to MC4R deficient mice. The team then set out to find if these individuals have an altered preference for high fat and low sucrose content foods. The fat preference test consisted of a choice of three meals, ranging from low fat content to high fat content, with little change in appearance or taste. The sugar preference test involved a choice between three similar desserts with varying sugar levels.

Compared to obese and lean controls with fully functioning MC4R protein, individuals with MC4R mutations showed an increased preference for high fat food and a decreased preference for sugary food. Although the “liking” scores were similar across all three meal choices for all groups, MC4R deficient individuals consumed 95% more of the high fat meal than the lean group, and 65% more than obese controls. The MC4R deficient group also ate significantly less dessert in total than either of the other groups.

These results support those previously found in mice and are evidence of a genetic influence to food preference in humans. This is the first study to directly link genetics to food behavior, and could have profound effects on therapy development for metabolic diseases.

Sources: Nature, Popular Science, University of Cambridge
About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
AUG 18, 2020
Genetics & Genomics
Autism is Linked to Abnormal Lipid Levels
AUG 18, 2020
Autism is Linked to Abnormal Lipid Levels
Scientists have found a cluster of genes that plays a role in the development of an autism subtype. The genes are involv ...
AUG 23, 2020
Cardiology
Gaining Insight Into a Mysterious Network of Fibers in the Heart
AUG 23, 2020
Gaining Insight Into a Mysterious Network of Fibers in the Heart
Leonardo da Vinci knew about a mesh, fibrous network surrounding the heart, and after hundreds of years, scientists are ...
SEP 04, 2020
Genetics & Genomics
Expanding Our View of How Gene Variants Affect Blood Cells
SEP 04, 2020
Expanding Our View of How Gene Variants Affect Blood Cells
Small changes in the sequences of some genes affect the characteristics of blood cells, and may contribute to an individ ...
OCT 05, 2020
Immunology
Can't Shed Those Extra Pounds? An Inflammatory Gene Could Be to Blame.
OCT 05, 2020
Can't Shed Those Extra Pounds? An Inflammatory Gene Could Be to Blame.
  Australian scientists have zeroed in on a gene linked to an increased obesity risk: a regulator of inflammation c ...
OCT 12, 2020
Genetics & Genomics
The Malaria Parasite Can Change Host Cell Genetics
OCT 12, 2020
The Malaria Parasite Can Change Host Cell Genetics
Mosquitoes can transmit the malaria-causing Plasmodium parasite to humans. Malaria was estimated to have caused the deat ...
OCT 25, 2020
Genetics & Genomics
A Purr-fect Domestic Cat Genome
OCT 25, 2020
A Purr-fect Domestic Cat Genome
There are thought to be more than 94 million cats in the US alone. Researchers have now improved the reference genome se ...
Loading Comments...