DEC 16, 2016 12:33 PM PST

Potential New Drug Target For Epilepsy

WRITTEN BY: Jennifer Ellis

Epilepsy is one of the most common neurological diseases worldwide, affecting more than 50 million people. Epilepsy is characterized by seizures ranging from brief and barely detectable to severe episodes of shaking and convulsions. The neurological disease doesn’t seem to have a direct cause but is known to be due to incorrect or excessive firing of neurons.  

Research has shown that there is a genetic component to epilepsy, however, many cases are caused by trauma or stroke. And despite the more than 30 types of medications available to help treat epileptic seizures, there are still an estimated one third of patients who have uncontrollable symptoms.

Scientists at the Imperial College London recently discovered an ‘epileptic network’ of genes that are associated with epilepsy and might lead to a new approach to treatment. The group of 320 genes, called M30, is thought to be involved in cell to cell communication in the brain. The study is published in Genome Biology.

VPA, a commonly used AED with a wide range of clinical efficacy, is the one that is most significantly predicted to restore the expression of M30 in epilepsy toward health. (MR Johnson et al, 2016)

Dr. Michael Johnson, senior author of the study, explains that any malfunction in this network can trigger epilepsy. By developing new therapies to repair the network, clinicians could treat epilepsy at its initial source and possibly halt seizures. Potential treatments are not limited to genetic causes either. The network seems to be broken in both epileptic cases caused by genetic mutations and in those caused by injury such as stroke or infection.

The team used systems biology and expression network analysis to examine thousands of genes and mutations associated with epilepsy. They also looked at expression data from healthy human brains to find networks of these genes that work together and from mice to confirm that when these networks malfunction they cause epileptic seizures. They observed that M30 contains several genes that are downregulated in many different types of epilepsy.

“Until recently we have been looking for individual genes associated with diseases, which drug companies then target with treatments. However, we are increasingly aware that genes don’t work in isolation. Identifying groups of genes that work together, and then targeting these networks of genes, may lead to more effective treatments. Our proof of concept study suggests this network biology approach could help us identify new medications for epilepsy, and the methods can also be applied to other diseases.”

After zeroing in on the M30 network, researchers virtually tested 1,300 known seizure associated treatments to see which ones affected the functioning of the network and which ones could restore any issues. They found two drugs that seemed to have substantial effects on seizure intensity and frequency; one is a known epileptic treatment and the other had not previously been used in standard therapy.

Using differential expression analysis of the genes based on drug exposure, the scientists saw a dose-dependent effect on M30 with Valproic Acid, a known epileptic medication, and suggested that higher doses of the medication would produce a greater therapeutic effect.

The screen also highlighted a new network-drug interaction with whitaferin A, a steroidal lactone contained in the Indian ginseng plant that has been used in Ayurvedic medicine for treatment of a wide range of diseases including epilepsy. Additional studies of whitaferin A in animal models have reported the anticonvulsive effect of this drug.

Johnson suggested that network biology, the computational analysis method used in the study, could be used to identify gene networks associated with other diseases, resulting in new approaches to finding treatments and novel therapies.

Sources: Genome Biology, Science and Technology Research

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
SEP 02, 2020
Microbiology
A Common Bacterium Can Evolve in the Stomach
SEP 02, 2020
A Common Bacterium Can Evolve in the Stomach
Helicobacter pylori can be found in as much as fifty percent of the world's population.
SEP 14, 2020
Cancer
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
SEP 14, 2020
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
It is often unknown whether a patient will respond to a treatment until it is in full swing. New research is attempting ...
OCT 14, 2020
Genetics & Genomics
Robots Are Moving Developmental Biology Forward
OCT 14, 2020
Robots Are Moving Developmental Biology Forward
Researchers have created a robot that can analyze the effects of mutations that occur in portions of the genome that hel ...
NOV 12, 2020
Genetics & Genomics
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
NOV 12, 2020
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
To repair disease-causing errors in the genome, gene editing reagents like those used in CRISPR-Cas9 first have to reach ...
NOV 16, 2020
Genetics & Genomics
Hidden Genes in the SARS-CoV-2 Genome
NOV 16, 2020
Hidden Genes in the SARS-CoV-2 Genome
It's essential for organisms to use their genomes to make proteins, and the processes of transcription and translation a ...
NOV 30, 2020
Cell & Molecular Biology
Can a Scent Motivate Us to Exercise?
NOV 30, 2020
Can a Scent Motivate Us to Exercise?
People are always looking for new ways to get inspired to exercise. Now odor is being proposed as a motivational tool fo ...
Loading Comments...