DEC 18, 2016 8:21 PM PST

Gene Profiling Breaks Down Decisions Made in the Immune System

WRITTEN BY: Kara Marker

How do lymphocytes make the decision to launch an attack or act otherwise? Researchers from the Weizmann Institute of Science were interested in answering this question and more, using a combination of two technologies to answer questions long asked about how cells send signals and make decisions.

Source: Digital Trends

The new combination of technologies can manipulate and understand cause and effect with the upmost precision and speed. “A single experiment with this method may be equal to thousands of experiments conducted using previous approaches,” the scientists said.

Researchers started with CRISPR gene editing technology, which was first discovered in bacteria. The microbes were found to be using it for their own protection against viruses, essentially “cutting and pasting” viral DNA into their own genomes so they would recognize their foes when they encountered them more than once.  

Study leader Ido Amit, PhD and his lab have been working on the development of single-cell RNA sequencing, the second piece to the puzzle. This form of genomic profiling involves sequencing messenger RNA molecules from each individual cell. Messenger RNA sequences provide clues as to the cell’s activity in a certain tissue. Amit and his lab combined their RNA sequencing technology with known CRISPR techniques to discover unique cell functions in groups of cells, a combination with Amit called “a new molecular microscope.”

The discovery of novel cell variations showed Amid and his team how and why immune cells of the same type sometimes function differently depending on what tissue they were found in. The new technology allowed the team of scientists to make changes as well as observations, with one gene change able to make a monumental difference in a cell’s function.

“By linking cells with similar behaviors, something like the algorithms Netflix uses to group people who like similar movies, we were able to identify previously unrated functions for many genes,” said leading author Assaf Weiner, who designed the algorithms used in their studies.

They tested their technology in mice immune cells, studying their activity as they dealt with pathogenic invasions. Like looking under the hood of a car to understand how the engine works, scientists could observe immune cell activity and contemplate making changes to either modify or improve the cells’ activity.

Based on their findings and past studies, Amit and his team believed that neither CRISPR nor single-cell RNA sequencing on its own could have produced the results that they did in their study.

The findings from their study were published in the journal Cell.

Source: Weizmann Institute of Science  

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 23, 2020
Genetics & Genomics
FEB 23, 2020
Revealing More About the Genetic Mechanisms Underlying Down Syndrome
Down syndrome impacts around 6,000 live births in the US every year. Around 95% of affected individuals have a type call ...
FEB 25, 2020
Genetics & Genomics
FEB 25, 2020
Improving Gene Therapy With Plant-Based Relatives of Cholesterol
Cholesterol analogs give nanoparticles a shape that helps them get where they need to go.
APR 01, 2020
Microbiology
APR 01, 2020
How Two Types of Tests for COVID-19 Work
There are a couple of different kinds of tests that researchers will be developing and clinicians will be using to disru ...
APR 27, 2020
Genetics & Genomics
APR 27, 2020
New Insight Into HIV Opens Path to Better Therapeutics
Researchers have made a breakthrough in our understanding of HIV infections.
MAY 05, 2020
Cell & Molecular Biology
MAY 05, 2020
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
Samples obtained from patients from all over the world have been used to sequence the genomes of the viral strains infec ...
MAY 26, 2020
Neuroscience
MAY 26, 2020
Alzheimer's Gene Doubles Risk of Severe COVID-19
Researchers from the University of Exeter, England, and the University of Connecticut have found that people carrying fa ...
Loading Comments...