APR 01, 2015 04:22 PM PDT

Premature Aging of Stem Cell Telomeres Linked to Emphysema

WRITTEN BY: Ilene Schneider
Lung diseases like emphysema and pulmonary fibrosis are common among people with malfunctioning telomeres, the "caps" or ends of chromosomes. Now, researchers from Johns Hopkins say they have discovered what goes wrong and why.
Human chromosomes (grey) capped by telomeres (white).
Mary Armanios, M.D., an associate professor of oncology at the Johns Hopkins University School of Medicine., and her colleagues report that some stem cells vital to lung cell oxygenation undergo premature aging-and stop dividing and proliferating-when their telomeres are defective. The stem cells are those in the alveoli, the tiny air exchange sacs where blood takes up oxygen.
In studies of these isolated stem cells and in mice, Armanios' team discovered that dormant or senescent stem cells send out signals that recruit immune molecules to the lungs and cause the severe inflammation that is also a hallmark of emphysema and related lung diseases.

Until now, Armanios says, researchers and clinicians have thought that "inflammation alone is what drives these lung diseases and have based therapy on anti-inflammatory drugs for the last 30 years."

But the new discoveries, reported March 30 in Proceedings of the National Academy of Sciences, suggest instead that "if it's premature aging of the stem cells driving this, nothing will really get better if you don't fix that problem," Armanios says.

Acknowledging that there are no current ways to treat or replace damaged lung stem cells, Armanios says that knowing the source of the problem can redirect research efforts. "It's a new challenge that begins with the questions of whether we take on the effort to fix this defect in the cells, or try to replace the cells," she adds.

Armanios and her team say their study also found that this telomere-driven defect leaves mice extremely vulnerable to anticancer drugs like bleomycin or busulfan that are toxic to the lungs. The drugs and infectious agents like viruses kill off the cells that line the lung's air sacs. In cases of telomere dysfunction, Armanios explains, the lung stem cells can't divide and replenish these destroyed cells.

When the researchers gave these drugs to 11 mice with the lung stem cell defect, all became severely ill and died within a month.

This finding could shed light on why "sometimes people with short telomeres may have no signs of pulmonary disease whatsoever, but when they're exposed to an acute infection or to certain drugs, they develop respiratory failure," says Armanios. "We don't think anyone has ever before linked this phenomenon to stem cell failure or senescence."

In their study, the researchers genetically engineered mice to have a telomere defect that impaired the telomeres in just the lung stem cells in the alveolar epithelium, the layer of cells that lines the air sacs. "In bone marrow or other compartments, when stem cells have short telomeres, or when they age, they just die out," Armanios says. "But we found that instead, these alveolar cells just linger in the senescent stage."

The stem cells stayed alive but were unable to divide and regenerate the epithelial lining in the air sacs. After two weeks, the senescent lung stem cells only generated five new epithelial structures per 5,000 stem cells, compared to an average of 425 structures from 5,000 healthy stem cells.

The researchers say they also hope to learn more about how mice with this telomere defect in lung stem cells respond to cigarette smoke. Other studies of patients with telomere defects, including one published last year by Armanios and her colleagues, suggest that telomere defects may be one of the more common predisposing factors to lung diseases, such as emphysema.

Further studies should help the scientists determine whether cigarette smoke causes lung disease in this setting because of stem cell failure, says Armanios.

Source: Johns Hopkins
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Non-Invasive Gene Therapy Holds Promise for Treating Blindness
Researchers at John Hopkins Medicine have found a way to deliver sight-saving gene therapy to the retina. Having already shown success in treating rates, p...
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
ADHD Found to be More Likely in Kids With Young Mothers
The risk of developing ADHD is strongly linked to young maternal age during the first birth....
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Can CRISPR Replace Antibiotics?
Antibiotic-resistant infections claim around 700,000 lives per year, with estimates saying that this number could swell to 10 million by 2050 (Jacobs: 2019...
DEC 14, 2019
Neuroscience
DEC 14, 2019
The Key to Living Longer is REST
  Scientists at Harvard Medical School show new evidence that the key to living longer is to get plenty of sleep.   The researchers were mapping ...
DEC 14, 2019
Microbiology
DEC 14, 2019
New Drug Can Promote Resistance in the Flu Virus
A flu drug, while still safe and effective, encourages flu viruses to mutate, especially in children....
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Promising New Treatment for Mitochondrial Disease Found in Fruit Flies
Researchers at the University of Cambridge have discovered a protein in fruit flies that can reverse the effects of harmful mutations in mitochondrial gene...
Loading Comments...