NOV 16, 2018 12:04 PM PST

Liver gets activated by just seeing and smelling food!

Smell, sight and even thinking about food makes us salivate. This salivary reflex prepares us for digestion, as we need the saliva to help in the mastication process. But, this might not be the only one that prepares ahead for the digestive processes. Other known physiological changes initiated by food sensory perception are an increase in heart rate and the release of digestive enzymes. These pre-food intake responses prime the body and allow for rapid metabolism of nutrients post intake and effective removal from the circulation later. However, the role of peripheral organs the mediate these processes is not very well understood until now.

Recent work done by researchers from Max Plank Institute, Germany shows that the liver also gets activated by sight and the smell of food in anticipation of the prerequisite metabolic changes required for food intake. Through various high throughput screening, the authors have found evidence that the food cues transiently activate hepatic signaling to prime the liver for the nutrient intake. The molecular pathway involved has been elucidated. The study is published in Cell on November 15th.

Post food intake, blood insulin, and nutrient level increases and this, in turn, activates the liver via mechanistic target of rapamycin (mTOR) pathway and the endoplasmic reticulum (ER) stress response pathways. Hepatic signaling pathways induce the ER adaptation to increase protein-folding capacity that is essential for metabolic activities.  A previous study published in a cell by researchers from Department of physiology at the University of California have identified the neuronal pathways associated with the sensory perception of food. A rapid feedback response was observed before food intake.  

Building on this work, Jens Bruning’ team investigated the downstream pathways in which the neural signals translate to metabolic activities in the liver. Dr. Jens Brüning, an endocrinologist, geneticist, and director of the Max Planck Institute for Metabolism Research in Cologne, Germany is the senior author on the manuscript. He says that “This finding changes our view of one of the most fundamental processes in the body. The perception of food in the brain activates the liver in such a way that it begins preparing to receive the nutrients that it expects to come.”

Graphical abstract showing the signaling pathway activated when a mouse prepares to eat. Image Credit: Brandt et al. Cell, 2018.

Within five minutes of mice perceiving food, the rapid neuronal activity induced a signaling cascade that activated hepatic signaling pathways. Conventionally, these pathways are activated by the presence of circulating nutrients and uptake by the liver. “Our research shows that these changes in the liver occur in response to the mice seeing and smelling the food,” Brüning says. “It’s a whole coordinated program to prime the ER and get it ready for more proteins being synthesized and folded after eating.”

 Translation of this preclinical animal research to human’s and the potential therapeutic implications of such findings especially, in disease pathologies for diabetes and obesity does hold promise.

“There’s a possibility that this food sensory-dependent priming of the liver may be compromised in obesity. It could be a mechanism that contributes to insulin resistance,” Brüning explains. “Obesity may leave the liver unprepared for protein folding after eating, which in turn could disrupt the normal insulin response. This is something we plan to look at in future studies using obesity models in mice.”

Sources: Cell Press, Neuroscience News

About the Author
  • Aswini Kanneganti is an experienced research scientist from Dallas, Texas. Her interests include neuroscience, medical devices, and neuromodulation.
You May Also Like
MAR 04, 2021
Clinical & Molecular DX
Is the Cancer Treatment Working? Liquid Biopsies Provide Answers.
MAR 04, 2021
Is the Cancer Treatment Working? Liquid Biopsies Provide Answers.
A newly-developed tool could help physicians monitor the performance of colorectal cancer therapies simply by examining ...
MAR 10, 2021
Genetics & Genomics
As Diphtheria Cases Rise & More Become Drug Resistant, It May Become a Threat
MAR 10, 2021
As Diphtheria Cases Rise & More Become Drug Resistant, It May Become a Threat
Diphtheria was once a leading cause of death for children; immunization programs eventually changed that for most countr ...
MAR 15, 2021
Cardiology
'Silent' Heart Attacks Linked to Significant Increase in Stroke Risk
MAR 15, 2021
'Silent' Heart Attacks Linked to Significant Increase in Stroke Risk
Silent heart attacks can happen, in which blood flow to the heart is blocked, and heart tissue may be damaged, but they ...
MAR 18, 2021
Immunology
COVID Cytokine Storm Chasers Look Inside the Lungs
MAR 18, 2021
COVID Cytokine Storm Chasers Look Inside the Lungs
Immunologists have revealed one of the underlying mechanisms behind COVID’s life-threatening cytokine storms. By s ...
MAR 17, 2021
Health & Medicine
CBD Inhibits Brain Changes that Initiate  Alzheimer's: Animal Study
MAR 17, 2021
CBD Inhibits Brain Changes that Initiate Alzheimer's: Animal Study
Cannabidiol, or CBD — the main non-psychoactive ingredient in cannabis — may inhibit some triggers for Alzhe ...
MAR 29, 2021
Microbiology
High-Fiber Diets Can Alter the Microbiome Quickly & Significantly
MAR 29, 2021
High-Fiber Diets Can Alter the Microbiome Quickly & Significantly
We know that the microbes in the gut have a significant effect on human biology, and researchers are starting to learn m ...
Loading Comments...