MAY 25, 2019 4:00 PM PDT

Use of Electroceutical Wound Dressings to Treat Pseudomonas Aeruginosa Biofilms

WRITTEN BY: Dena Aruta

Biofilms are aggregates of microbial cells bound to a surface and are capable of making an extra-cellular polymer matrix. They can be found in 90% of chronic wound infections. The microorganisms responsible for these infections are increasingly becoming resistant to antibiotics resulting in treatment failure, even with long-term antimicrobial therapy. Developing new treatment strategies is vital since the medical and surgical costs of chronic wound infections reach $25 billion in healthcare costs each year. There has been recent interest in using electroceutical dressings, which use electric currents or fields to eliminate biofilms and to facilitate healing in chronic wounds. 

Image 1. Procellera Electroceutical Dressing 

Credit: Vomaris Innovations, Inc.

Wound infections are usually located in soft tissue in vivo, but most in vitro studies have been performed in liquid media. Devendra H. Dusane, PhD, and colleagues set out to determine and minimize the knowledge gap concerning ways electrical current may impact biofilms in soft tissue infections. They used the bioluminescent Pseudomonas aeruginosa (PA) Xen41 strain and cultured them as a biofilm on agar plates, which is an in vitro format of soft tissue. At the bottom of the agar plates and not directly touching the biofilm, rectangular silver foil electrodes were used to apply current to the biofilm. The researchers assessed the effects of the applied current on the "activity and killing of PA biofilm bacteria [which] was assessed by bioluminescence, viable cell counts, and scanning electron microscope (SEM) imaging." 

For this study, the lawn biofilms of PA-Xen 41 were made by spreading the overnight culture of PA-Xen 41 in T-Soy broth (TSB) onto T-Soy agar (TSA). The Ag electrodes were embedded underneath the TSA, which has a thickness of about 3.6 mm. A 1:100 dilution was made by taking 100 µL of the overnight PA-Xen41 culture and mixed with 9.9 mL TSB. 400 µL of the diluted culture was spread onto the TSA to form the biofilm, and the Petri dishes were incubated at 37°C in 5% CO2 for 24 hours The PA-Xen 41 cultures were identified as biofilms by measuring their resistance to tobramycin, an aminoglycoside antibiotic.

Image 2. In vitro imaging system (IVIS) images showing the time-dependent killing of PA biofilms after applying a current through TSA.

Color bars in IVIS images show red as highly metabolically active/live and blue/black as inactive.

Credit: Dusane et al. (Creative Commons License)

 

The data from this study indicate that electroceutical dressings are successful in treating biofilms alone; however, combining them with specific medications is more effective in eliminating the biofilm. This type of dressing is also useful in preventing new infections with biofilms.

"Clearly, future work must focus on identifying specific reactive species and migration characteristics to determine [the] efficacy of electrical stimulation in vivo," states Davendra Dusane, lead author of the study.

 

 

About the Author
  • After earning my Bachelor of Science degree in biology/chemistry from Virginia Polytechnic Institute and State University (aka Va. Tech), I went on to complete clinical rotations in laboratory medicine at Roanoke Memorial Hospital. I spent the next 21 years working in healthcare as a clinical microbiologist. In 2015, I combined my fascination with medicine and passion for writing into a freelance career, and I haven't looked back. Even though my expertise is in microbiology and infectious diseases, I'm adept at writing about any medical topic. Being a freelance writer allows me to pursue a career where I can work at home with my two feline assistants, Luke and Grace. I'm a firm supporter of animal rights and volunteer for a local rescue during my free time. 
You May Also Like
JUL 08, 2020
Drug Discovery & Development
Common Blood Pressure Drugs May Prevent Colon Cancer
JUL 08, 2020
Common Blood Pressure Drugs May Prevent Colon Cancer
Colon cancer is the third most common cancer and the second leading cause of death by cancer around the world. Now, rese ...
JUL 12, 2020
Microbiology
Our Flu Response Is Influenced by Previous Exposures
JUL 12, 2020
Our Flu Response Is Influenced by Previous Exposures
The flu is caused by a respiratory virus, which evolves from year to year. Three kinds of influenza viruses infect human ...
JUL 16, 2020
Immunology
Cancer Vaccine Charges Toward the Clinic
JUL 16, 2020
Cancer Vaccine Charges Toward the Clinic
Kristen Radford, a professor at Australia’s University of Queensland is among a scientific research team developin ...
JUL 14, 2020
Health & Medicine
Sick Children and Cannabis: A Hospital Offers a Lifeline to Parents
JUL 14, 2020
Sick Children and Cannabis: A Hospital Offers a Lifeline to Parents
A new report in the journal Pediatrics gets the conversation going on a much under-reported area: sick children being ad ...
JUL 30, 2020
Cardiology
Protecting the Heart Against Cardiotoxicity
JUL 30, 2020
Protecting the Heart Against Cardiotoxicity
Doxorubicin is a potent chemotherapy drug used for many different cancers. Unfortunately, like all chemotherapies, doxor ...
AUG 03, 2020
Genetics & Genomics
Understanding How Disease Risk Begins in Development
AUG 03, 2020
Understanding How Disease Risk Begins in Development
Many common complex diseases are thought to be caused by an interplay of genetic and environmental factors.
Loading Comments...