NOV 27, 2019 4:40 PM PST

3D-printed cell traps catch cancer cells on the move

WRITTEN BY: Tara Fernandez

The early stages of metastasis, or the spread of cancer cells from the primary tumor site, are incredibly difficult to detect by analyzing blood samples. For a 10 milliliter sample, this would mean positively identifying a mere handful of cancerous cells amidst 50 million blood cells.

A. Fatih Sarioglu and collaborating investigators at the Georgia Institute of Technology are turning to 3D-printing technology for solutions — using cell traps to narrow the analysis pool, making cancer cells considerably easier to spot.

In research published in the journal Lab on a Chip, the team from the School of Electrical and Computer Engineering (ECE) designed devices with intricate layers of microfluidic channels, through which a patient’s blood sample would flow through. The architecture of the fluid path extracts larger cells (such as white blood cells and cancer cells), letting smaller red blood cells continue to flow through. 

Analyzing just the subpopulation of trapped cells makes the cancer diagnostic process significantly simpler, faster and cheaper. The instrument is also designed to be gentle enough to keep any captured tumor cells completely intact — a critical design feature to maximize diagnostic accuracy.

As tumors advance, they can begin to migrate to distant sites in the body by invading into surrounding tissue structures, traveling with the flow of the lymphatic system, or via the blood circulation. Wide-spread tumor metastasis dramatically decreases a patient’s chance of survival, making early warnings potentially life-saving. 

For instance, just over 50 percent of patients with lung cancer are expected to live five years past diagnosis. At later stages of cancer, metastasis causes this rate to drop to just 5 percent.

To evaluate the effectiveness of their new technology, the researchers spiked healthy blood samples with known numbers of cancer cells and ran the samples through the device. Results indicated that the device was highly effective, having snared 90 percent of tumor cells.

The device was also found to be successful in catching circulating cancer cells in small amounts of blood drawn from patients with metastatic prostate cancer.

Future iterations of the device will focus on further simplifying its design and boosting its performance and manufacturability. 

It is anticipated that commercializing this technology would be a big step up for the future of personalized medicine by allowing clinicians to detect red flags and execute treatment strategies against metastatic cancer earlier and more effectively.


Sources: Science Daily, Futurity, Lab on a Chip

Photo credit: Allison Carter, Georgia Tech

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
MAR 06, 2020
MAR 06, 2020
Why Is Good Nutrition Advise So Hard to Come By
Nutrition advice seems to come from everywhere. Exposure to this advice, one is likely to find endless examples of conflicting information. This happens fo...
MAR 04, 2020
Cannabis Sciences
MAR 04, 2020
Smoking Marijuana Could Cause 12 Hour Erections
Smoking marijuana is known to have multiple side effects. From getting the munchies to paranoia and memory problems, it is also usually thought to cause er...
MAR 20, 2020
MAR 20, 2020
The Little Things Matter: The Mental Impact of Social Distancing
Image: Metropolitian State University of Denver The COVID-19 pandemic has caused social interactions, resources, and most aspects of daily life to halt ind...
MAR 20, 2020
MAR 20, 2020
Control Release Technology for Medically Favorable Gases
Researchers have recently developed solid material that can control the release of physiologically favorable gases. The study is critical in administering ...
MAR 25, 2020
Health & Medicine
MAR 25, 2020
Boosting Your Immunity to Avoid COVID-19 Infection
With the COVID-19 pandemic at the forefront of most people’s minds, you might be wondering what you can do to keep yourself healthy. Though many are ...
MAR 29, 2020
MAR 29, 2020
Coronavirus Damages Heart Tissue, Not Just the Lungs
Although most severe cases of the novel coronavirus involve respiratory failure, new research has found that the virus may also infect the heart and its su...
Loading Comments...