JUN 15, 2021 7:00 AM PDT

Enabling biomarker discovery with functional proteomics

SPONSORED BY: IsoPlexis

Clinical biomarkers are critical for the acceleration of curative medicines. The identification of these novel clinical biomarkers allows researchers to better understand complex mechanisms of immune response to diseases, facilitating the development of more effective therapeutics. Functional biomarkers can be used to predict response, identify potential effective treatments, and monitor a patient's response to treatment. Functional biomarker discovery is leading the growth of personalized medicine, allowing researchers and clinicians to tailor treatment to a patient's individual immune profile. 

With scientists conducting groundbreaking research every day to gain insight into the world's most complex and life-threatening diseases and bring effective treatments to patients around the globe, the need to get answers faster and accelerate therapeutic development timelines is more urgent than ever. Functional proteomics is one of the most promising fields for the development of life-saving vaccines and therapeutics and the ability to conduct multi-omic analysis is also crucial, as it enables scientists to deepen their understanding of disease mechanisms by studying a disease from several angles, such as the secretome, metabolome, and phosphoproteome. Unfortunately, many scientists believe that functional immune research requires a lengthy workflow with many expensive technologies and specialized personnel to run them, even to look at only one -ome. Researchers might assume that running a multi-omic analysis will take months or years and put a significant strain on their lab's budget.

Because immune cells communicate via cytokines, it is crucial to capture the range of relevant cytokines to understand disease mechanisms and develop effective therapeutics. The ability to conduct functional proteomics on the single-cell level is also vital, as cells are heterogeneous. Traditional technologies such as mass spectrometry, genomics, and flow cytometry are missing a critical data layer for accelerating curative medicines. Further, when it comes to treating solid tumors, signaling and activation pathways are key to understanding how tumors become resistant, but current technologies fall short in providing crucial data to solve this challenge. 

IsoPlexis' single-cell secreted proteomics unlocks a new functional data layer by detecting rare cell subsets of highly polyfunctional cells, which have been proven to be highly predictive biomarkers in studies across many different research disciplines. Polyfunctionality has correlated with outcomes, such as in vivo persistence, anti-tumor function, and immune suppression in several high-impact publications. This technology has been crucial in many different areas, but cancer presents a unique set of challenges that IsoPlexis can solve. When cells begin to become drug-tolerant, they undergo metabolic changes, where phosphorylated protein signaling plays a large role. Combining single-cell phosphoproteomics with metabolomics allows for the characterization of phosphoprotein signaling cascades, activation pathways, and cellular metabolism so that resistant cell populations and functional pathways to resistance can be identified and resolved. IsoPlexis' single-cell phosphoproteomics and metabolomics accelerates the discovery of biomarkers of drug resistance and the development of therapeutics for difficult-to-treat tumors.

Across a broad range of medical disciplines, IsoPlexis' multifaceted functional proteomics platform enables biomarker discovery with single-cell secreted proteomics, low-volume highly multiplexed proteomics from serum, single-cell phosphoprotein analysis, and single-cell metabolomic analysis all on one integrated, benchtop system, making multi-omic analysis accessible to virtually every lab worldwide. By providing walk-away automation and returning fully analyzed, publication-ready data same-day with the powerful IsoSpeak data informatics software, researchers can conduct a multi-omic workflow in just one week, saving valuable time.

Learn more about IsoPlexis technology, download our eBook: Accelerating Clinical Biomarker Discovery for Curative Medicines.

About the Sponsor
Other
IsoPlexis is a life science technology company building solutions to accelerate the development of curative medicines and personalized therapeutics. Our award-winning single-cell proteomics systems reveal unique biological activity in small subsets of cells, allowing researchers to connect more directly to in-vivo biology and develop more precise and personalized therapies.
You May Also Like
JAN 05, 2023
Technology
A new belt device can help better monitor people with heart failure
A new belt device can help better monitor people with heart failure
Heart failure is a condition that refers to the heart’s inability to pump enough oxygenated blood to the body. Acc ...
JAN 08, 2023
Cannabis Sciences
Reefer Before Root Canals? 52% of Dentists Report Patients Coming to Dental Appointments High
Reefer Before Root Canals? 52% of Dentists Report Patients Coming to Dental Appointments High
A recent survey by the American Dental Association (ADA) found that about 52% of dentists reported increased rates of pa ...
JAN 06, 2023
Health & Medicine
Exercise Preserves Physical Fitness During Aging: Scientists Are Beginning to Understand Why
Exercise Preserves Physical Fitness During Aging: Scientists Are Beginning to Understand Why
Regular exercise is known to have numerous health benefits for people who are aging. Exercise can help to improve streng ...
JAN 10, 2023
Technology
Using AI to predict brain age and risk of neurodegenerative diseases
Using AI to predict brain age and risk of neurodegenerative diseases
We’ve probably all experienced the disconnect between our biological age and the age we appear to other people. Ma ...
JAN 20, 2023
Cannabis Sciences
Cannabis and People Over 65
Cannabis and People Over 65
How does cannabis affect people over 65? What do older consumers need to look out for?
JAN 31, 2023
Cardiology
Stress Impacts Female & Male Hearts Differently
Stress Impacts Female & Male Hearts Differently
The "fight or flight" response causes different reactions in male and female hearts, which may explain sex differences i ...
Loading Comments...