JUL 07, 2016 5:17 AM PDT

Scientists Reinvent Beta-Blockers to Treat Heart Failure

WRITTEN BY: Kara Marker
Traditional beta-blockers target beta1-adrenergic receptors, which helps to prevent heart cells from dying and exacerbating a case of heart failure. However, beta1-adrenergic are also responsible for helping the heart to continue pumping blood to carry oxygen to the body tissues. For the almost six million Americans who suffer from heart failure, scientists were desperately seeking out a way to improve beta-blockers to both save dying heart cells and preserve the pumping abilities of the heart muscle. For scientists from Thomas Jefferson University, this discovery and much more followed after careful experimentation.
Selective activation of the beta2-adrenergic receptor by a beta-arrestin-biased pepducin promotes activation of a beta-arrestin signaling pathway
The Thomas Jefferson University researchers found their solution by altering the target pathway of beta-blockers. Rather than targeting beta1-adrenergic receptors, they designed a molecule called a "pepducin," which was created from partsof the beta2-adrenergic receptor. Pepducins, they found, naturally activates beta2-adrenergic receptors and only these receptors, potentially bypassing the negative effect beta-blockers have on the pumping action of the heart without giving up on saving dying heart cells.

The alternate pathway of treating heart failure, said senior author of the study Jeffrey Benovic, PhD, is "an excellent example of how a little curiosity in the basic research laboratory can lead to discoveries that have  the potential to change the way we treat a very common and very deadly illness." The Centers for Disease Control and Prevention estimate that half of all people with heart failure will die from the disease within five years.

The discoveries didn't stop with pepducins and beta2-adrenergic receptors. While studying the structure of pepducins in finer detail, one of the team scientists noticed that the pepducins they had designed looked a lot like an existing treatment for heart failure, a drug called carvedilol. This drug targets both beta-1 and beta-2 adrenergic receptors as well as alpha-receptors to lower blood pressure, relax arteries, and even acts as an antioxidant, eliminating free radicals in the blood. Realizing the similarities between pepducins and carvedilol pushed the scientists to dive even further into the true power of pepducins. What they found was astronishing.

They discovered that pepducins not only preserved the beating abilities of cardiomyocytes, but they enhanced the force of the beating to a higher level. This discovery was especially shocking because until now, researchers were not aware that beta2-adrenergic receptors were capable of impacting the beating function of the heart. Since pepducins uniquely activate beta2-adrenergic receptors, they knew it was this pathway that was stimulating the forceful heart beat. 

Next the identified a secondary signaling molecule called beta-arrestin as the intermediary force behind the heart cells beating, with activation of pepducins leading to contraction of cardiomyocytes increased by up to 50 percent. However, with the right tweaking, researchers from the study believe they could get pepducins enhancing cardiomyocyte contraction up to a full 100 percent. 

"If we find or design a compound that works like this pepducin, it wouldn't necessarily cure heart disease, but it would give doctors another tool to help bolster a failing heart," Benovic said. He and his team are now working on improving pepducin before bringing it into clinical trials. It may be a little while longer, but it seems as if the future of heart failure treatment is on the way.

This study was recently published in the Proceedings of the National Academy of Sciences.
 


Sources: Thomas Jefferson University, CDC, CHFpatients.com
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 02, 2021
Cancer
When Cholesterol Doesn't Kill Cancer, it Makes it Stronger!
SEP 02, 2021
When Cholesterol Doesn't Kill Cancer, it Makes it Stronger!
High cholesterol is associated with an increased risk of several types of cancer, and cancer patients with high choleste ...
SEP 07, 2021
Health & Medicine
Vaccines- a Long History of Cost-Benefit Analysis
SEP 07, 2021
Vaccines- a Long History of Cost-Benefit Analysis
Vaccination and new treatments for diseases have remained topics of skepticism since their inception. When it came to an ...
SEP 12, 2021
Cell & Molecular Biology
What Happens When Two Viruses Infect the Same Cell?
SEP 12, 2021
What Happens When Two Viruses Infect the Same Cell?
Pathgenic microbes that infect cells can affect each other. It's not unusual for people with viral respiratory infection ...
SEP 14, 2021
Health & Medicine
The New Social Darwinists: It's All About Survival at Any Cost
SEP 14, 2021
The New Social Darwinists: It's All About Survival at Any Cost
Researchers have found that people who perceive social relations in general Darwinian terms tend toward various personal ...
SEP 14, 2021
Health & Medicine
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
SEP 14, 2021
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
Among healthcare professionals, it is common knowledge that cardiovascular disease is the leading cause of death in the ...
SEP 22, 2021
Cancer
Whole Genome Sequencing for Cancer Diagnostics
SEP 22, 2021
Whole Genome Sequencing for Cancer Diagnostics
The human genome consists of genetic material known as DNA.  We all have unique DNA sequences made up of four bases ...
Loading Comments...