AUG 08, 2016 12:00 PM PDT

TSRI Scientists Pinpoint Ebola's Weak Spots

The Scripps Research team succeeded in showing how experimental therapy ZMapp targets the Ebola virus, here targeting the virus's GP protein. (Image courtesy of Andrew Ward and Jesper Pallesen.)

LA JOLLA, CA – August 8, 2016 – Scientists at The Scripps Research Institute (TSRI) now have a high-resolution view of exactly how the experimental therapy ZMapp targets Ebola virus.

The new study is also the first to show how an antibody in the ZMapp “drug cocktail” targets a second Ebola virus protein, called sGP, whose vulnerable spots had previously been unknown.

“This sGP protein is tremendously important,” said TSRI Professor Erica Ollmann Saphire, who co-led the study with TSRI Associate Professor Andrew Ward. “This is the roadmap we need to target the right molecules in infection.”

“Determining the proper balance in targeting these two Ebola proteins will be key to building improved therapeutics,” added Ward.

The study was published August 8, 2016 in the journal Nature Microbiology.
 

Zooming in on ZMapp


Scientists need detailed images of Ebola virus’s molecular structure. Like enemy reconnaissance, structures can show where Ebola is vulnerable and how medical treatments can neutralize it.

TSRI scientists are harnessing an imaging technique called cryo-electron microscopy (in which a sample is pelted with electrons) to create high-resolution, 3-D images of Ebola virus and the antibodies that fight it.

“We’re at the cutting edge of our ability to resolve high-resolution protein complexes,” said TSRI Research Associate C. Daniel Murin, co-first author of the new study with TSRI Research Associate Jesper Pallesen.

In the new study, the researchers used cryo-electron microscopy to see exactly how Ebola virus interacts with the three antibodies in the ZMapp experimental therapy produced by Mapp Biopharmaceutical, also a study collaborator.

The researchers had imaged these interactions at a low resolution in a 2014 study, but the new study revealed substantially more details, including the exact angles the antibodies use to approach the molecule on the surface of the virus, termed its surface glycoprotein (GP), and the individual amino acid contact points at which the antibodies bind GP. This information provides new clues to researchers trying to make the antibodies even more effective.

“The three components of ZMapp, now resolved at high-resolution, can be further engineered in a structure-based manner for improved potency,” said Ward.
 

Solving an Elusive Structure


Next, the researchers took a closer look at one of the three antibodies that make up ZMapp, called 13C6. This antibody is unique because it can also target the soluble Ebola protein sGP.

sGP’s role in infection is a mystery. Ebola virus makes the protein profusely, indicating that it is important, but then sGP appears just to float in a person’s blood serum. One theory is that sGP may be essential in the natural host “reservoir.”

“Eighty to ninety percent of what Ebola virus makes in infection is this shed molecule,” said Saphire. “It’s like a smoke screen, and we need to know where it is similar to our target GP and where it is different.”

To add to the mystery, Ebola makes GP and sGP using the same gene. A small difference in the way the gene is read changes how the molecules are shaped and changes their roles.

One obstacle to understanding sGP is that it is too small to be seen with cryo-electron microscopes. To solve this problem, the researchers added “bulk” by pairing sGP with antibodies, including 13C6. This allowed them to kill two birds with one stone—they could see sGP’s structure while also studying how antibodies interact with it.

The new image shows the binding sites, or “epitopes,” the antibody targets. “We can see hot spots on this virus that we can hit,” said Pallesen.

This study is the latest research from the Viral Hemorrhagic Fever Consortium, an international partnership of research institutes led by Saphire. The researchers said collaboration with the consortium was key to this study, allowing scientists to share samples and data, including viral genetic sequences isolated from patients in the most recent Ebola outbreak.

In addition to Saphire, Ward, Murin and Pallesen, authors of the study, “Structures of Ebola virus GP and sGP in complex with therapeutic antibodies,” were Natalia de Val, Christopher A. Cottrell, Kathryn M. Hastie, Hannah Turner and Marnie Fusco of TSRI; Kristian G. Andersen of TSRI and the Scripps Translational Science Institute; Andrew I. Flyak and James E. Crowe of Vanderbilt University and Larry Zeitlin of Mapp Biopharmaceutical.

This study was supported by the National Institutes of Health (NIH, grant R01 AI067927), the NIH’s National Institute of Allergy and Infectious Diseases (grant U19AI109762 and U19AI109711) and the National Science Foundation.

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
DEC 23, 2020
Cancer
A Combination of Photo and Sonodynamic Therapies Could Assist in Treating Brain Cancer
DEC 23, 2020
A Combination of Photo and Sonodynamic Therapies Could Assist in Treating Brain Cancer
Brain cancer is an incredible challenge for modern medicine. Most drugs don’t make it past the blood-brain barrier ...
DEC 28, 2020
Neuroscience
Prenatal Metal Exposure Has Long Term Health Consequences
DEC 28, 2020
Prenatal Metal Exposure Has Long Term Health Consequences
Researchers from Rutgers University have found that prenatal exposure to metals, including lead, arsenic, cobalt, and ni ...
JAN 09, 2021
Neuroscience
Rest No Substitute for Sleep When Learning
JAN 09, 2021
Rest No Substitute for Sleep When Learning
Researchers from the University of Freiburg in Germany have found that resting does not substitute the benefits of deep ...
JAN 12, 2021
Cardiology
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
JAN 12, 2021
SGLT2 Inhibitors Can Reduce the Cardiovascular Risk for Diabetics Being Treated with Insulin
One of the biggest problems that come alongside diabetes is the increased risk of cardiovascular disease. Treatment of d ...
JAN 14, 2021
Clinical & Molecular DX
Tip of the Iceberg: Inaccuracies in Prostate Cancer Diagnostics
JAN 14, 2021
Tip of the Iceberg: Inaccuracies in Prostate Cancer Diagnostics
  Only 10 percent of icebergs are visible on the surface of the water; the remaining 90 percent remains submerged. ...
JAN 15, 2021
Health & Medicine
Understanding Hearing Aids
JAN 15, 2021
Understanding Hearing Aids
According to this report from the World Health Organization, more than 5% of the world’s population suffers from d ...
Loading Comments...