SEP 13, 2016 7:35 AM PDT

TSRI Scientists Discover Antibodies that Target Holes in HIV's Defenses

New Findings Could Lead to New AIDS Vaccine Candidates.

LA JOLLA, CA – September 12, 2016 – A new study from scientists at The Scripps Research Institute (TSRI) shows that “holes” in HIV’s defensive sugar shield could be important in designing an HIV vaccine.

It appears that antibodies can target these holes, which are scattered in HIV’s protective sugar or “glycan” shield, and the question is now whether these holes can be exploited to induce protective antibodies.

“It’s important now to evaluate future vaccine candidates to more rapidly understand the immune response they induce to particular glycan holes and learn from it,” said TSRI Professor Dennis R. Burton, who is also scientific director of the International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and of the National Institutes of Health’s Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) at TSRI.

The study, published recently in the journal Cell Reports, was co-led by Burton, TSRI Associate Professor Andrew Ward, also of CHAVI-ID, and Rogier W. Sanders of the University of Amsterdam and Cornell University.
 

A Clue to Stopping HIV


Every virus has a signature structure, like the architecture of a building. By solving these structures, scientists can put together a blueprint showing where HIV is vulnerable to infection-blocking antibodies.
In the 1990s, scientists discovered that HIV can have random holes in its protective outer shell of glycan molecules. Until now, however, scientists weren’t sure if antibodies could recognize and target these holes.

Researchers at Cornell and TSRI had previously designed a stabilized version of an important HIV protein, called the envelope glycoprotein (Env) trimer, to prompt rabbit models to produce antibodies against the virus. In the new study, the plan was to reveal HIV’s vulnerabilities by examining where the antibodies bound the virus.

“From work on HIV-positive individuals, we knew that the best way to understand an antibody response is to isolate the individual antibodies and study them in detail,” said Laura McCoy, a TSRI, IAVI and CHAVI-ID researcher now at University College London, who served as co-first author of the study with TSRI Senior Research Associate Gabriel Ozorowski, also of TSRI and CHAVI-ID, and Marit J. van Gils of the University of Amsterdam.

To their surprise, when the researchers examined the rabbits’ antibodies, they found three rabbits had produced antibodies that targeted the same hole in Env. It appeared that antibodies could indeed target holes in the glycan shield.

“This opened up a whole new concept,” said Ozorowski.

If the immune system was targeting this hole—preferring it to other vulnerable spots on Env—maybe holes would be especially important in designing vaccine candidates.
 

Toward Better Antibodies


By analyzing the genetic sequences of thousands of strains of HIV, the researchers found that 89 percent of strains appear to have a targetable hole in the Env. The virus has a defense mechanism though—it quickly mutates to fill in these gaps.

The researchers speculate that future vaccines might prompt the immune system to create antibodies to target holes. “Targeting a hole could help the immune system get its foot in the door,” Ozorowski said. Alternatively, the holes may prove a distraction and should be filled in so the immune system can focus on targeting better sites for neutralizing the virus.

Burton said researchers must investigate the different possibilities, but he emphasized that this new understanding of glycan holes could help researchers narrow down the field of molecules needed in potential HIV vaccines.

Ward added that this same method of “rational” vaccine design—where researchers use a virus’s precise molecular details to prompt the immune system to produce specific antibodies—can also be applied to efforts to fight other viruses, such as influenza and Ebola viruses.

In addition to Burton, Ward, Sanders, McCoy, Ozorowski and van Gils, authors of the study, “Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies,” were Terrence Messmer, Bryan Briney, James E. Voss, Daniel W. Kulp, Devin Sok, Matthias Pauthner, Sergey Menis and Jessica Hsueh of TSRI, IAVI and CHAVI-ID; Christopher A. Cottrell, Jonathan L. Torres and Ian A. Wilson of TSRI and CHAVI-ID; Matthew S. Macauley of TSRI; and William R. Schief of TSRI, IAVI, CHAVI-ID and the Ragon Institute.

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
OCT 01, 2020
Health & Medicine
Menopausal Women Find Relief in Cannabis
OCT 01, 2020
Menopausal Women Find Relief in Cannabis
A growing number of women may be using cannabis for managing menopause symptoms, evidence from  the Midlife Women V ...
OCT 05, 2020
Genetics & Genomics
A Rare Form of Dementia is Discovered
OCT 05, 2020
A Rare Form of Dementia is Discovered
There are different types of dementia, a term for a loss of cognitive function, including Alzheimer's disease and Le ...
OCT 09, 2020
Microbiology
Two Early Relatives of Rubella Are Discovered
OCT 09, 2020
Two Early Relatives of Rubella Are Discovered
Rubella is a contagious, airborne viral infection that can lead to rash, fever, and sore throat. It's especially dangero ...
OCT 20, 2020
Immunology
The Immune Pause Button Slowing MS Progression
OCT 20, 2020
The Immune Pause Button Slowing MS Progression
  Scientists have a new theory about the genetics behind the progressive, debilitating effects of multiple sclerosi ...
OCT 26, 2020
Cancer
Investigating the Receptor Protein FPR1 in Brain Cancer
OCT 26, 2020
Investigating the Receptor Protein FPR1 in Brain Cancer
Amongst the more common targets for cancer therapies are cell surface receptors. These receptors are proteins – us ...
OCT 29, 2020
Clinical & Molecular DX
More Frequent Trips to the Pediatrician Linked to a Future Autism Diagnosis
OCT 29, 2020
More Frequent Trips to the Pediatrician Linked to a Future Autism Diagnosis
 
Loading Comments...