OCT 12, 2016 9:42 AM PDT

The CRISPR Craze Paints the Future of Genome Engineering

WRITTEN BY: Kara Marker
The adaptive bacterial immune system known as CRISPR has taken biomedicine by storm in the years following its discovery. Before beginning his time at N.C. State University as an Associate Professor in food science, CRISPR pioneer and scientist Rodolphe Barrangou spent nearly a decade of his life dedicated to establishing and applying CRISPR technology in the lab and in the industry, and now Barrangou embarks on telling the world about what people call the “CRISPR Craze.”

Clustered Regularly Interspaced Short Palindromic Repeats
 
Barrangou aptly describes CRISPR as a “molecular scalpel to do molecular surgery.” Whether it is for gene therapy, plant breeding, or food production, CRISPR works because restriction enzymes recognize a short sequence motif in DNA, make a precise cut, which leads to DNA repair, and editing of the sequence at the site of cleavage.
 
“Imagine a phrase found in a book,” Barrangou explains. “Cut sentences every time you find that phrase on a page of a book, then expanding to an entire chapter, then throughout the whole book, and then a whole library.” This is how he describes the power of CRISPR programmable restriction enzymes. Like a library with hundreds or thousands of books, the human genome contains more than three billion letters. CRISPR’s molecular scalpel searches the entire genome for a specific motif, and every time it finds that sequence it makes a cut, eventually leading to re-writing (editing) the sequence at the site of interest.

“You can program CRISPR to recognize a very unique sequence in the very large, extensive, and diverse book of life,” Barrangou says. “And it cuts there. That’s why CRISPR restriction enzymes are molecular scalpels, and that’s why the process is molecular surgery.”

 
Different Systems of CRISPR
 
CRISPR technology is derived from bacteria, which evolved these adaptive immune systems for the same reasons that humans did: for protection from invasive viruses in nature. Like the viruses that infect humans, bacteria have to protect themselves from viruses containing different kinds of nucleic acids as their genetic material. Different recognition methods vary in bacterial CRISPR systems depending on the target nucleic acid type, leading to a collection of protective tools in bacteria that Barrangou calls a “genetic arsenal.”
 
Plus, Barrangou explains, bacteria can also obtain genes from other bacteria via mechanisms like lateral gene transfer. “CRISPR helps them maintain the homeostasis of their genome when this happens,” he says. “When they encounter foreign DNA that they want to fight, CRISPR ensures the genes aren’t integrated.”
 
Meanwhile, In North Carolina
 
The applications for CRISPR in genome engineering are nearly endless, and researchers all over the world now have labs dedicated to enhancing CRISPR systems and finding ways to apply them to multiple aspects of science.
 
At Barrangou’s CRISPR lab in Raleigh, North Carolina, a task force of 14 made up of staff, students, and post-docs collaborate on several projects of their own. Just to name a few, Barrangou’s team is working on:
  1. Developing CRISPR-Cas systems that cleave more efficiently.
  2. Improving specificity of the “molecular scalpel” – preventing unintentional cuts in a genetic sentence with similar phrasing to the target sequence
  3. Enhancing the delivery of CRISPR-Cas systems into the genome
Barrangou and lab members
 
The applications in bacteria span vaccination of dairy cultures against phages, the development of enhanced health-promoting probiotics, and the use of self-targeting CRISPRs as programmable antimicrobials. What’s amazing is that while hundreds of scientists are busy tinkering with known CRISPR systems, there are undoubtedly even more CRISPR systems left to be discovered in nature.

“There are even some that have been discovered that scientists haven’t been able to fully understand yet,” Barrangou says. “New systems are expected to be uncovered over time; bacteria are always evolving.”  

Amidst all of the new scientific findings, awards received, and questions raised about the future of genome engineering, Barrangou continues to go on the road to “spread the gospel of CRISPR:” in museums, public arenas, business settings, for students and career development, and outreach events for people of all ages. The very first published report of CRISPR-related clustered repeats in adaptive bacterial immune systems came out back in 1987, but the discoveries are far from over. In the words of Barrangou: “the CRISPR Craze is everywhere,” and it continues to spread.
 


Source: Interview with Rodolphe Barrangou
Images: Leaders in Pharmaceutical Business Intelligence, Business Insider, N.C. State University CRISPR Lab
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
OCT 06, 2020
Cardiology
A New Heart Drug Taken from a Yellow Dye
OCT 06, 2020
A New Heart Drug Taken from a Yellow Dye
Cardiovascular disease is an ever-present issue in the modern world.  One of the most unfortunate cardiovascular ev ...
SEP 29, 2020
Chemistry & Physics
The benefits of electronic blood vessels
SEP 29, 2020
The benefits of electronic blood vessels
New research published in the journal Matter reports on the development of electronic blood vessels that are capable of ...
OCT 07, 2020
Neuroscience
Researchers Discover Molecular Mechanism for Memory Formation
OCT 07, 2020
Researchers Discover Molecular Mechanism for Memory Formation
Researchers from MIT have found that when the brain forms a new memory, neurons known as 'engram cells' encode t ...
OCT 11, 2020
Cell & Molecular Biology
Newly-Found Molecules May Treat Neurodegeneration
OCT 11, 2020
Newly-Found Molecules May Treat Neurodegeneration
The NMDA receptor is known to play a crucial role in memory, and synaptic plasticity - where neurons change, altering ne ...
OCT 17, 2020
Clinical & Molecular DX
Imaging Innovation Set to Ease the Pain of Osteoarthritis
OCT 17, 2020
Imaging Innovation Set to Ease the Pain of Osteoarthritis
In osteoarthritis, the joint cartilage that cushions bones begins to break down, causing debilitating pain and stiffness ...
OCT 24, 2020
Genetics & Genomics
Cord Blood Samples Reveal More About the Genetics of Autism
OCT 24, 2020
Cord Blood Samples Reveal More About the Genetics of Autism
The activity of genes in our genome is controlled by many factors, one of which are chemical tags or structural changes ...
Loading Comments...