DEC 12, 2016 9:38 AM PST

TSRI Scientists Devise New Approaches to Personalized Medicines

JUPITER, FL – December 12, 2016 – Scientists on the Florida campus of The Scripps Research Institute (TSRI) have developed broad methods to design precision medicines against currently incurable diseases caused by RNA.

RNA carries out thousands of essential functions in cells, but many RNAs can act in uncontrolled ways and cause disease. For decades, scientists have tried to develop drug candidates that target human RNAs, but they have been hampered by an inability to achieve sufficient selectivity (to reduce the potential of side effects) and potency (ensuring effectiveness).

In a study published today online ahead of press in the journal Nature Chemical Biology, researchers—led by TSRI Professor Matthew Disney and Research Associate Suzanne Rzuczek, with important contributions from Professor Ryohei Yasuda and Research Associate Lesley Colgan of the Max Planck Florida Institute for Neuroscience—have disclosed several approaches to overcome these hurdles.

“This study reads like science fiction,” Disney said. “We present for the first time multiple solutions to this long-standing problem. With the precision of a surgeon’s scalpel, we have shown that small molecules can be designed to seek out and destroy only disease-causing RNAs. Further, we developed novel chemical approaches to use a disease-causing RNA to help make its own drug by using that RNA as a catalyst for drug synthesis at the needed site. It is like having your physician place a drug at the right place without exposing healthy cells.”

Although these studies have broad implications for RNA diseases in general, they were demonstrated on myotonic dystrophy type 1, an incurable inherited disorder that involves progressive muscle wasting and weakness. It is caused by an RNA defect known as a “triplet repeat,” a series of three nucleotides repeated more times than normal in an individual’s genetic code, in this case, a cytosine-uracil-guanine (CUG) triplet.

In many genetic diseases, there are two copies of the problem gene—a mutant copy that causes a disease and a normal copy that a cell needs to survive. Selective recognition of the diseased gene product has not been possible before.

This new study demonstrates that designer small molecules can selectively recognize larger, disease-associated repeats (alleles) over shorter, normal ones.

“We developed several approaches to create allele-selective small molecules that seek out only the disease-causing gene product, including covalent binding, cleavage and imaging,” said TSRI Research Associate Suzanne G. Rzuczek, first author of the study. “All approaches show precise recognition of toxic r(CUG) repeats and, more importantly, they showed that the mutant repeat is the sole target.”

The work also offers an innovative way to track the movement of RNA in a diseased cell via imaging. “We have brought RNAs out of the darkness and into the light by developing a chemical flare that goes off when a drug targets the RNA in a diseased cell and then continues to track the RNA’s movement,” Disney added.

"We probed disease-causing RNA using a technique called fluorescence lifetime imaging—a sensitive technique to measure fluorophore binding,” said Max Planck’s Ryohei Yasuda. “We were very excited when we observed a huge difference in signal from their probes between disease cells and normal cells under our microscope technique."

Max Planck’s Lesley Colgan added, "The combination of cutting-edge chemistry and microscopy techniques developed in Florida is a powerful approach to identify new methods to probe and manipulate (and kill) disease-causing RNA in cells."

Both Disney and Yasuda were 2015 recipients of the National Institutes of Health (NIH) Director’s Pioneer Award, which supports individual scientists of exceptional creativity who propose highly innovative approaches with high-impact potential.

In addition to Disney, Rzuczek, Colgan and Yasuda, other authors of the study, “Precise Small Molecule Recognition of a Toxic RNA Repeat Expansion,” include Yoshio Nakai and Michael D. Cameron of TSRI and Denis Furling of Sorbonne Universités (Paris).

The study was supported by the NIH (grants DP1NS096898 and DP1NS096787), the Muscular Dystrophy Association (grant 380467) and the Myotonic Dystrophy Foundation.

This article was originally published on Scripps.edu.

About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
DEC 15, 2020
Genetics & Genomics
Can a Brain Look Lonely?
DEC 15, 2020
Can a Brain Look Lonely?
Many isolated individuals have been isolated this year, and the holidays may only exacerbate feelings of loneliness.
DEC 19, 2020
Microbiology
How Ticks Are Protected From the Diseases They Carry
DEC 19, 2020
How Ticks Are Protected From the Diseases They Carry
Ticks are notorious vectors of disease, but they can transmit those illnesses without becoming infected themselves.
DEC 27, 2020
Immunology
A Fatty Diet can be Fuel for Tumor Growth!
DEC 27, 2020
A Fatty Diet can be Fuel for Tumor Growth!
Obesity is a significant problem in our societies with increasing the risk for many diseases, including cancer. Can ...
JAN 06, 2021
Immunology
Probiotic Boosters Are Lifesavers for Preterm Babies
JAN 06, 2021
Probiotic Boosters Are Lifesavers for Preterm Babies
When administered shortly after birth, a recent study has found that the supplementation combo of probiotics and prebiot ...
JAN 15, 2021
Health & Medicine
Understanding Hearing Aids
JAN 15, 2021
Understanding Hearing Aids
According to this report from the World Health Organization, more than 5% of the world’s population suffers from d ...
JAN 18, 2021
Cancer
An "E-Nose" Could Help Doctors Diagnose Breast Cancer and Its Subtypes
JAN 18, 2021
An "E-Nose" Could Help Doctors Diagnose Breast Cancer and Its Subtypes
Breast cancer is one of the most well-studied cancers in modern medicine. Diagnostics can already differentiate between ...
Loading Comments...