AUG 21, 2018 08:15 AM PDT

T cells Trapped by Brain Cancer

In 2018 in the United States about 23,880 individuals will be diagnosed with malignant tumors of the brain or spinal cord, with 16,830 individuals dying from a brain or spinal cord tumor. A recent study published in Nature Medicine reveals how brain cancers escape detection by the immune system by inhibiting and trapping T-cells in bone marrow. When it comes to brain cancers low numbers of immune system T cells in the blood is not uncommon, this can be a side effect of cancer treatments.

Many different types of brain tumors exist, they may be benign or malignant as well as originating in the brain or spread from other parts of the body. The growth rate of brain tumors can vary as well as the location in the brain; these two factors can influence how it may affect the function of your nervous system. Symptoms typically include headaches, nausea, vision problems, speech difficulties, confusion, and behavior changes among many other things. Risk factors can include exposure to radiation as well as family history of brain tumors or genetic syndromes. Treatment can vary based on the type of brain tumor as well as the size and location but may include chemotherapy or immunotherapy.

Researchers from the Osaka University, as well as other institutions, studied T cells levels in patients with brain cancers. Imaging results and blood tests of patients were analyzed, even before being treated. Despite the low T cell levels, they found that patients had contracted spleens indicating that the T cells are not sequestered in the spleen. Similar results were seen in mice, but upon examination of bone marrow, a significant expansion of T cell numbers was seen in the mice. When the bone marrow of human patients was examined a similar phenomenon was observed, T cells that would usually attack the tumor are trapped in the bone marrow.

Using flow cytometry, they found an inverse relationship between T-cell surface protein S1P1 levels and T-cell numbers in the bone marrow. Protein S1P1, known as Sphingosine-1-phosphate receptor 1, is involved in immune cell regulation and development specifically suppression of innate immune response from T cells. The S1P1 protein is needed for T-cells to leave the bone marrow as well as the spleen, thymus, and lymph nodes. It appears that based on the study brain tumors prevent T cells from leaving the bone marrow by lowering levels of protein S1P1. Researchers found that the T cells can be freed by blocking internalization of S1P1 allowing the T cell to emerge from the bone marrow.

"We expect these results to provide clues that will help improve the effects of immunotherapy treatments for brain tumors," says coauthor Shohei Koyama. "It should be possible to induce these trapped T lymphocytes to migrate and attack the tumor." Therapies that focus on activating these T cells may be useful adjuncts to current treatments for brain cancers.

To learn more about T cells and how they interact with cancer cells watch the video below!

Sources: Nature Medicine, Mayo Clinic, American Cancer Society, National Cancer Institute

About the Author
  • Caitlin holds a doctorate degree in Microbiology from the University of Georgia where she studied Mycoplasma pneumoniae and its glycan receptors. She received her Bachelor's in Biology from Virginia Tech (GO HOKIES!). She has a passion for science communication and STEM education with a goal to improve science literacy. She enjoys topics related to human health, with a particular soft spot for pathogens.
You May Also Like
NOV 15, 2019
Genetics & Genomics
NOV 15, 2019
Increasing Evidence Shows Narcolepsy is an Autoimmune Illness
Narcolepsy is a chronic sleep disorder impacting as many as 200,000 people in the US, and is thought to often go undiagnosed....
NOV 15, 2019
Cardiology
NOV 15, 2019
Opioid Addiction Comes With Increased Risk Of Infection
Public health officials have put decades of work into the battle against infectious diseases. Now, this progress is at risk of being dismantled. A recent s...
NOV 15, 2019
Immunology
NOV 15, 2019
How to Kill Superbugs
https://www.technologynetworks.com/immunology/news/enhancing-the-infection-fighting-potential-of-natural-products-321553...
NOV 15, 2019
Health & Medicine
NOV 15, 2019
Diagnosis and Treatment of Neurosarcoidosis
Sarcoidosis is a multisystem inflammatory disease characterized by the formation of non-caseating granulomas in the affected organs. The majority of p...
NOV 15, 2019
Health & Medicine
NOV 15, 2019
Study Links High Birth Weight to Risk of Allergies
Researchers from the University of Adelaide, Australia have linked the risk of developing childhood food allergies and eczema to heavier birth weight. The...
NOV 15, 2019
Drug Discovery & Development
NOV 15, 2019
Effective Vaccines for Lyme Disease?
Currently, there are no effective vaccines available for the presentation of Lyme disease. The only preventive efforts present includes “guiding&rdqu...
Loading Comments...