OCT 01, 2018 11:40 AM PDT

Fate of the T Cell

The immune system consists of a variety of different cell types. But how do the cells undergo differentiation? A study recently published in Science, from members of the University of Alabama Birmingham and a few other laboratories, including Casey Weaver, M.D., the Wyatt, and Susan Haskell, Professor of Medical Excellence in Pathology reveals the mechanisms at play during critical T cell differentiation processes after an antigenic threat has been detected.

CD4+ helper T cells are responsible for aiding B cells in the production of antibodies and memory cells; they are known as T follicular helper cells (TFH). CD4+ T cells are also involved in the production of cells that initially respond to an infection; these are known as non-T follicular helper cells or non-TFH.

Until this study, the work behind the differentiation was not well understood. Previous studies suggested the T cell growth factor called interleukin -2 or IL-2 had something to do with it.

The team of researchers began by genetically engineering IL-2 reporter mice; a never before explored option to determine when and where IL-2 production occurs. The engineered mice allow for the cells to be sorted into two groups; IL-2 producing cells and non-IL-2 producing cells. The sorting could be completed in a few hours whereas previous methods allowed only for sorting a few days after the IL-2 production.

Further analysis of the sorted cells shows the genetic makeup to become divergent. Specific genes known to be in association with the TFH development and function are activated with IL-2 production. Opposite to this observance, non-IL-2 producing cells activated genes known to be associated with the non-TFH effector cells.

Interested in the bifurcation of CD4+ T cells, the team of researchers also explored the details surrounding TFH and non-TFH effector cells. This work displayed evidence that strength of the bond between the antigen and the antigen receptors on naïve T cells as well as increased antigens involved, correlated with increased IL-2 production.

DiToro shares, "having learned what goes into the development of TFH cells, now we can manipulate these powerful cells that are required by B cells to drive production of high-affinity antibodies."

Interestingly, the research shows that IL-2 production and exposure from TFH cells results in the increase of gene activation for non-TFH effector cells. This displays IL-2 acting in a hormone-like way affecting nearby cell behavior.

BcI6, a gene involved in TFH cell development, is activated when exposed to IL-2. This exposure differentiates the T cell further into three types of non-TFH cells; intracellular single-celled, viral or bacterial pathogens for Th1; multi-celled organisms like worms for Th2; and extra-cellular single-celled pathogens like E. coli for Th17.

In an in vivo model with mice, inflammatory response conditions give insight into the role of memory T cells. Memory T cells are responsible for sticking around for a long time to ensure quick adaptive responses to pathogens a host may have already encountered at one time or another. This work utilized naïve CD4+ T cells and the development of the Th1, Th2 or Th17 cell types. The work shows IL-2 producing T cells to become central memory T cells found in lymph tissue and non-IL-2 producing T cells to become effector memory T cells (cells that do not leave the peripheral blood/tissues).

The research team suggests that their results, “should provide a basis for strategies to modulate the balance of effector T cell responses for therapeutic ends."

Sources: Science, Science Daily, Creative Diagnostics

About the Author
You May Also Like
JUN 22, 2018
Health & Medicine
JUN 22, 2018
A New Test for Peanut Allergy: Better, Faster, Cheaper.
Scientists from the Medical Research Council (MRC) in the UK have come up with a test to detect peanut allergies and it’s safer, quicker and more acc...
JUL 04, 2018
Microbiology
JUL 04, 2018
Revealing How Gut Bacteria can Impact our Health
Our GI tract pays host to trillions of microbes, which have been shown to play a highly influential role in our health and well-being....
AUG 18, 2018
Immunology
AUG 18, 2018
Two Proteins Play Unexpected Role in Immune System Regulators
Two proteins, PLD3 and PLD4, discovered to have role in immune system detection and response to pathogens....
AUG 29, 2018
Immunology
AUG 29, 2018
Artificial Intelligence Predicts Response to Immunotherapy
Artificial intelligence can process CT scan images to determine biological and clinical information that can predict immunotherapy efficacy thanks to machine learning....
OCT 08, 2018
Immunology
OCT 08, 2018
Natural Killer Cells to Aid in Cancer Therapy
Researchers utilize nanoparticles to stimulate NK cells that induce tumor cells to express PDL1, a protein involved in immune response messaging...
OCT 09, 2018
Immunology
OCT 09, 2018
Complement Function Expands
Additional roles to complement protein C3 have been described in work performed by a team of researchers at the Lund University in Sweden...
Loading Comments...