OCT 01, 2018 11:40 AM PDT

Fate of the T Cell

WRITTEN BY: Nicholas Breehl

The immune system consists of a variety of different cell types. But how do the cells undergo differentiation? A study recently published in Science, from members of the University of Alabama Birmingham and a few other laboratories, including Casey Weaver, M.D., the Wyatt, and Susan Haskell, Professor of Medical Excellence in Pathology reveals the mechanisms at play during critical T cell differentiation processes after an antigenic threat has been detected.

CD4+ helper T cells are responsible for aiding B cells in the production of antibodies and memory cells; they are known as T follicular helper cells (TFH). CD4+ T cells are also involved in the production of cells that initially respond to an infection; these are known as non-T follicular helper cells or non-TFH.

Until this study, the work behind the differentiation was not well understood. Previous studies suggested the T cell growth factor called interleukin -2 or IL-2 had something to do with it.

The team of researchers began by genetically engineering IL-2 reporter mice; a never before explored option to determine when and where IL-2 production occurs. The engineered mice allow for the cells to be sorted into two groups; IL-2 producing cells and non-IL-2 producing cells. The sorting could be completed in a few hours whereas previous methods allowed only for sorting a few days after the IL-2 production.

Further analysis of the sorted cells shows the genetic makeup to become divergent. Specific genes known to be in association with the TFH development and function are activated with IL-2 production. Opposite to this observance, non-IL-2 producing cells activated genes known to be associated with the non-TFH effector cells.

Interested in the bifurcation of CD4+ T cells, the team of researchers also explored the details surrounding TFH and non-TFH effector cells. This work displayed evidence that strength of the bond between the antigen and the antigen receptors on naïve T cells as well as increased antigens involved, correlated with increased IL-2 production.

DiToro shares, "having learned what goes into the development of TFH cells, now we can manipulate these powerful cells that are required by B cells to drive production of high-affinity antibodies."

Interestingly, the research shows that IL-2 production and exposure from TFH cells results in the increase of gene activation for non-TFH effector cells. This displays IL-2 acting in a hormone-like way affecting nearby cell behavior.

BcI6, a gene involved in TFH cell development, is activated when exposed to IL-2. This exposure differentiates the T cell further into three types of non-TFH cells; intracellular single-celled, viral or bacterial pathogens for Th1; multi-celled organisms like worms for Th2; and extra-cellular single-celled pathogens like E. coli for Th17.

In an in vivo model with mice, inflammatory response conditions give insight into the role of memory T cells. Memory T cells are responsible for sticking around for a long time to ensure quick adaptive responses to pathogens a host may have already encountered at one time or another. This work utilized naïve CD4+ T cells and the development of the Th1, Th2 or Th17 cell types. The work shows IL-2 producing T cells to become central memory T cells found in lymph tissue and non-IL-2 producing T cells to become effector memory T cells (cells that do not leave the peripheral blood/tissues).

The research team suggests that their results, “should provide a basis for strategies to modulate the balance of effector T cell responses for therapeutic ends."

Sources: Science, Science Daily, Creative Diagnostics

About the Author
You May Also Like
MAR 23, 2021
Immunology
Assay Detects Antibodies in Asymptomatic COVID Carriers
MAR 23, 2021
Assay Detects Antibodies in Asymptomatic COVID Carriers
It is estimated that around one in five people infected with SARS-CoV-2 will not show any infection symptoms. Some of th ...
APR 16, 2021
Microbiology
A New Kind of COVID-19 Vaccine
APR 16, 2021
A New Kind of COVID-19 Vaccine
The current COVID-19 vaccines by Pfizer/BioNTech and Modern are based on messenger RNA, which cells use to make proteins ...
MAY 06, 2021
Immunology
COVID Vaccines Don't Protect Everyone
MAY 06, 2021
COVID Vaccines Don't Protect Everyone
New research has revealed that COVID-19 vaccines may not work as effectively in those whose immune systems have been neg ...
MAY 19, 2021
Health & Medicine
Who Ages Better, Men or Women?
MAY 19, 2021
Who Ages Better, Men or Women?
The answer depends on what's considered more important – quantity or quality of years?  Previous studies ...
MAY 31, 2021
Immunology
Engineering Faster, More Agile T Cell Cancer Fighters
MAY 31, 2021
Engineering Faster, More Agile T Cell Cancer Fighters
Cell therapies use engineered T cells extracted from the patient’s own immune system to rally an attack on tumors. ...
JUN 15, 2021
Health & Medicine
Enabling biomarker discovery with functional proteomics
JUN 15, 2021
Enabling biomarker discovery with functional proteomics
Clinical biomarkers are critical for the acceleration of curative medicines. The identification of these novel clinical ...
Loading Comments...