OCT 29, 2018 5:50 PM PDT

Immunity for All

WRITTEN BY: Nicholas Breehl

As bioinformatics tools continue to develop, researchers can utilize them as tools to look at data in great detail. One such example comes from a team of scientists at the Wellcome Sanger Institute have shown how genes involved in the immune response have varied activity between cells and species.

Cells will initiate immune responses when threatened by a pathogen. This first defense, or first-line, is known as the innate immune response. To be effective against pathogen clearance, the response must be aggressive; however, it cannot be too harmful otherwise, it will destroy the host tissue as well. A balance between the two ends of the spectrum must be accomplished.

How these constraints have shaped the evolution of innate immunity remains to be under-defined. The study described in the scientific journal Nature characterizes the innate immune response’s transcriptional divergence between species and variability in expression among cells.

Here, the team made use of bulk and single-cell transcriptomics in fibroblasts and phagocytes from difference species – cells involved in wound healing and the ingestion of foreign pathogens. The cells were stimulated with antigenic molecules to elicit responses. This allows the researchers to observe the architecture of the innate immune response.

The team was able to measure the activity of thousands of genes in over 250,000 individual cells using single-cell genomics technology to chart the evolution of antiviral and antibacterial immunity. It has previously been observed that many genes in the innate immune response have rapidly evolved in vertebrates. Pressure from pathogenic attacks is considered to be the reason for such high paced evolution.

The genes involved in the innate response include those that make cytokine and chemokine molecules. The team showed that these genes which have evolved rapidly across species also have highly variable activity in different cells within an individual’s tissue. The scientists suggest this may be a mechanism of self-preservation in the case that a pathogen manipulates these genes to avoid immune responses.

In contrast to these highly evolved genes, the team reveals other genes which are conserved between species, those involved in regulation of the immune response. These genes may be under tighter constraints because they are involved in many different functions within cells. The researchers believe these genes to be the main weakness when attacked by pathogens.

Dr. Sarah Teichmann, head of Cellular Genetics at the Wellcome Sanger Institute and senior author of the research remarked, “The power of DNA sequencing at the resolution of single cells means this kind of study is now possible. There are an estimated 37 trillion cells in the human body, each with the same genetic code. But individual cells behave differently; they use that genetic code differently. By studying cells, we can understand these fundamental building blocks of life and how they work together – including how they resist pathogens.”

The team suggests that the expression patterns observed across species and conditions have evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.

Sources: Nature, Science Daily, YouTube

About the Author
You May Also Like
JUL 13, 2019
Cell & Molecular Biology
JUL 13, 2019
Learning More About the Causes of Endometriosis Pain
Endometriosis can be an extremely painful disorder that significantly impacts quality of life....
OCT 16, 2019
Health & Medicine
OCT 16, 2019
Study Links High Birth Weight to Risk of Allergies
Researchers from the University of Adelaide, Australia have linked the risk of developing childhood food allergies and eczema to heavier birth weight. The...
OCT 29, 2019
Immunology
OCT 29, 2019
Immune Protein Prevents Herpes Spreading to the Brain
An immune protein that was discovered more than two decades ago has been identified as the primary component of a molecular blockade that prevents genital ...
NOV 26, 2019
Immunology
NOV 26, 2019
The Immune System's Hand in Toxic Shock
While rare, toxic shock is a dangerous condition that acts fast and can be fatal. A new study identified a new target for treating toxic shock, a component...
DEC 20, 2019
Neuroscience
DEC 20, 2019
Does Having Herpes Increase Your Risk for Alzheimer's?
Around 44 million people around the world have Alzheimer’s disease, a progressive form of dementia that leads to memory loss and a decline in cogniti...
DEC 31, 2019
Genetics & Genomics
DEC 31, 2019
Should the Scientist Behind World's First Gene Edited Babies be in Prison?
He Jiankui, the scientist behind the world’s first gene-edited babies in 2018, has been sentenced to three years in prison by Chinese authorities for...
Loading Comments...