APR 13, 2020 6:42 AM PDT

Macrophages: An Origin Story

WRITTEN BY: Kara Marker

Macrophages are well-known defense cells of the immune system, responsible for utilizing the cellular breakdown process of phagocytosis to digest pathogens and cellular debris. In a new study, researchers identify a novel, not-so-well-known pathway responsible for macrophage identity and expansion. Commandeering this pathway may help researchers manipulate the lives of macrophages to improve disease treatments.

If the immune system is a military defense system, then macrophages are the pacing guards primed to target any invader at first glance. Macrophages are vital for homeostasis via phagocytosis of dead and dying cells. Macrophages also act as antigen-presenting cells recruited via the inflammatory response, and they act also as independent immune cells in injured organs when a swift and effective response is needed.

The macrophages at the center of this new finding are particularly those that live in serous cavities that line and protect important organs, playing important roles in disease prevention such as cancer and heart attack. Findings from the new study may help researchers improve prevention in these cases by altering the way macrophages develop and grow.

Serous cavity-dwelling macrophages may take up residence in one of three serous membranes:

  1. Peritoneum: covers the abdominal cavity
  2. Pleura: covers the lungs
  3. Pericardium: covers the heart

"In recent years, work from many groups has changed the understanding of the hemopoietic origin and regulation of macrophages,” explained study coordinator Dr. Mercedes Ricote. “These studies have revealed enormous heterogeneity among tissue macrophages, depending on their embryonic or hemopoietic origin and on the miroenvironmental signals that modulate their identity and maintenance in adult life."

During the study, researchers explored how macrophages in serous cavities develop and expand after birth and are maintained throughout adulthood. They found that a nuclear receptor, retinoid X receptor (RXR), is largely responsible for regulating serous cavity macrophage development. RXRs live inside cells, sensing nearby lipids and vitamin A derivatives involved in RXR activation. This activation is the switch that “turns on” gene expression necessary for key physiological functions: development, immunity, homeostasis, and metabolism.

Researchers studied the activity of RXR in a newborn mouse model, discovering that RXR is a necessary part of the pipeline that produces serous cavity macrophages, their continuous proliferation, and their ultimate survival in adulthood. When RXR is missing from this pipeline, toxic lipids aggregate and kill cells via apoptosis, a process of programmed cell death.

Further, in a mouse model of ovarian cancer, researchers observed peritoneal macrophages actually supporting tumor growth, highlighting an opportunity for RXR manipulation to reduce macrophage populations in this destructive context.

Sources: Centro Nacional de Investigaciones Cardiovasculares (CNIC), Nature Communications

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 03, 2020
Clinical & Molecular DX
MAR 03, 2020
Singapore charges ahead with antibody-based test for COVID-19
Researchers, biotech and pharmaceutical companies are scrambling to put an end to the coronavirus disease (COVID-19) out ...
MAR 09, 2020
Immunology
MAR 09, 2020
Mobilizing the brain's immune cells boosts memory
A study by researchers at Australia’s RMIT University has uncovered a surprising connection between immune cells i ...
MAR 20, 2020
Drug Discovery & Development
MAR 20, 2020
4 Potential Treatments for SARS-CoV-2 Currently Under Testing
Currently, no medicine nor vaccine has been approved as effective for the prevention of severe acute respiratory syndrom ...
APR 07, 2020
Microbiology
APR 07, 2020
Second COVID-19 Vaccine Enters Human Trials
Yesterday, Inovio Pharmaceuticals, Inc. announced that it will begin human trials on a potential vaccine for COVID-19.
APR 10, 2020
Drug Discovery & Development
APR 10, 2020
Cancer Therapy Drug Reverses Kidney Damage
According to a study published in the journal Science Translational Medicine, a therapeutic previously used for cancer t ...
MAY 12, 2020
Immunology
MAY 12, 2020
Disabling Genes in Immune Cells Prevents Obesity
Obesity is a $1.7 trillion problem in the United States — a value almost 10% of the nation’s gross domestic ...
Loading Comments...