APR 15, 2020 2:31 PM PDT

How Malaria Protects Itself from the Immune System

WRITTEN BY: Kara Marker

A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoiding detection and destruction mechanisms normally deployed by the immune system to address pathogenic infections. In a new study, a research team seeks to understand how P. falciparum works in hopes of manipulating its activities to improve future malaria treatments.

Malaria is caused by parasites like P. falciparum that are transmitted to humans through mosquito bites. Symptoms include fever, chills, and other flu-like sensations. Without antimalaria drugs, the disease can cause complications that result in death. P. falciparum is responsible for more than 95% of deaths caused by malaria worldwide every year.

Normally, red blood cells infected with malaria parasites circulate through the bloodstream and are eventually filtered through the spleen where immune cells identify and attack infected cells. P. falciparum avoids this form of detection by producing “sticky” proteins that are ultimately displayed on the cell surface of red blood cells. These proteins cause blood cells to stick together, as well as to stick to blood vessel walls. In addition to preventing infected cells from passing through the spleen “checkpoint,” this activity increases the risk for dangerous blood clots.

"This malaria parasite species is able to use a number of different variants of the same protein to make red blood cells sticky,” explained co-lead author Heledd Davies. “So, if the body develops antibodies that stop one variant working, the parasite can simply switch to another one, leading to a constant arms race."

Researchers sought to understand exactly how P. falciparum successfully created “sticky” cells so that, in theory, they could improve malaria treatment by preventing this stickiness and allowing the immune system to properly filter out infected cells. They identified various protein kinases involved in transporting “sticky” proteins to the surface of red blood cells. Kinases are proteins that activate or deactivate other proteins involved in important cellular processes.

The kinases identified in the study are unique to the P. falciparum parasitic strain and likely involved in what makes related cases of malaria so lethal. In an experiment, researchers removed different protein kinases from P. falciparum while the parasite was actively living in human blood, ultimately identifying one with a crucial role in regulating the “sticky” effect. Further unidentified proteins may be of interest as well.

Sources: The Francis Crick Institute, Nature Microbiology, Centers for Disease Control and Prevention

 

 

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive prot ...
MAR 02, 2020
Drug Discovery & Development
MAR 02, 2020
DIY Fecal Transplants Improve Symptoms in 82% of People
Fecal transplants (FMT), the process of putting a healthy person’s fecal matter into another person’s colon, ...
MAR 19, 2020
Drug Discovery & Development
MAR 19, 2020
Could a 1949 Malaria Drug Treat COVID-19?
In the race to halt the current coronavirus pandemic, scientists, health experts and even Elon Musk are considering chlo ...
MAR 25, 2020
Health & Medicine
MAR 25, 2020
Boosting Your Immunity to Avoid COVID-19 Infection
With the COVID-19 pandemic at the forefront of most people’s minds, you might be wondering what you can do to keep ...
APR 21, 2020
Clinical & Molecular DX
APR 21, 2020
New Diagnostic FET-based Biosensor Enables Rapid Detection of SARS-CoV-2
The coronavirus disease 2019 (COVID-19) pandemic continues to be at the forefront of the World’s attention. COVID- ...
MAY 15, 2020
Immunology
MAY 15, 2020
Support the Microbiome So the Immune System Can Do Its Job
Research has long connected the human microbiome and immune system function, and now a recent study pinpoints a key poin ...
Loading Comments...