APR 15, 2020 2:31 PM PDT

How Malaria Protects Itself from the Immune System

WRITTEN BY: Kara Marker

A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoiding detection and destruction mechanisms normally deployed by the immune system to address pathogenic infections. In a new study, a research team seeks to understand how P. falciparum works in hopes of manipulating its activities to improve future malaria treatments.

Malaria is caused by parasites like P. falciparum that are transmitted to humans through mosquito bites. Symptoms include fever, chills, and other flu-like sensations. Without antimalaria drugs, the disease can cause complications that result in death. P. falciparum is responsible for more than 95% of deaths caused by malaria worldwide every year.

Normally, red blood cells infected with malaria parasites circulate through the bloodstream and are eventually filtered through the spleen where immune cells identify and attack infected cells. P. falciparum avoids this form of detection by producing “sticky” proteins that are ultimately displayed on the cell surface of red blood cells. These proteins cause blood cells to stick together, as well as to stick to blood vessel walls. In addition to preventing infected cells from passing through the spleen “checkpoint,” this activity increases the risk for dangerous blood clots.

"This malaria parasite species is able to use a number of different variants of the same protein to make red blood cells sticky,” explained co-lead author Heledd Davies. “So, if the body develops antibodies that stop one variant working, the parasite can simply switch to another one, leading to a constant arms race."

Researchers sought to understand exactly how P. falciparum successfully created “sticky” cells so that, in theory, they could improve malaria treatment by preventing this stickiness and allowing the immune system to properly filter out infected cells. They identified various protein kinases involved in transporting “sticky” proteins to the surface of red blood cells. Kinases are proteins that activate or deactivate other proteins involved in important cellular processes.

The kinases identified in the study are unique to the P. falciparum parasitic strain and likely involved in what makes related cases of malaria so lethal. In an experiment, researchers removed different protein kinases from P. falciparum while the parasite was actively living in human blood, ultimately identifying one with a crucial role in regulating the “sticky” effect. Further unidentified proteins may be of interest as well.

Sources: The Francis Crick Institute, Nature Microbiology, Centers for Disease Control and Prevention

 

 

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 20, 2020
Drug Discovery & Development
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
NOV 20, 2020
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
Researchers from the UK and France have discussed a mechanism of action behind the infamous Toxoplasma gondii  ...
NOV 25, 2020
Immunology
Another COVID-19 vaccine shows promising results!
NOV 25, 2020
Another COVID-19 vaccine shows promising results!
A week ago, another biotechnology company "Moderna" announced the preliminary results from its COVID-19 vaccin ...
DEC 09, 2020
Immunology
Antibodies as Warning Signs of a Silent Cardiovascular Killer
DEC 09, 2020
Antibodies as Warning Signs of a Silent Cardiovascular Killer
In atherosclerosis, cholesterol and other fatty deposits build up around the inner walls of an artery, creating a plaque ...
DEC 25, 2020
Immunology
A High-Fat Diet Starves Immune Cells, Tumor Growth Goes Unchecked
DEC 25, 2020
A High-Fat Diet Starves Immune Cells, Tumor Growth Goes Unchecked
  Sitting down to enjoy an indulgent Christmas feast? A recent study in mice by Harvard Medicine scientists found t ...
DEC 28, 2020
Genetics & Genomics
Mapping Networks of Gene Expression in Cells
DEC 28, 2020
Mapping Networks of Gene Expression in Cells
Every cell contains our whole genome, but not all genes are turned on all the time; gene expression has to be very caref ...
Loading Comments...