MAY 02, 2020 12:12 PM PDT

Cellular "Cleaning Crews" Get Busy During Spinal Cord Injury

WRITTEN BY: Tara Fernandez

 

Nerve cells transmit and receive information traversing the human body in the form of electrical impulses. These extremely delicate and sensitive cells are easily damaged as a result of accidents or disease. Following impairment, their likelihood of regaining function largely depends on their anatomical location. Nerves in the limbs and torso, for example, are able to repair themselves and regain some function.

Neurons in the brain and spinal cord, however, do not have these regenerative capabilities. Here, their healing is hindered by excessive scar tissue formation and inhibitory molecular processes inside the nerves. Consequently, around 40 percent of individuals with spinal cord injuries are considered paraplegic, and 60 percent are quadriplegic.

What are the cellular and molecular changes during spinal cord injury that are frustrating regeneration? Could the involvement of inflammatory processes be doing more harm than good?

Jonathan Kipnis and Kodi Ravichandran from the University of Virginia School of Medicine are seeking answers to these and other unanswered questions which could serve as a foundation for spinal cord injury therapies. The work is part of a $14 million grant to support research on inflammation from the Chan Zuckerberg Initiative.

In particular, the scientists are interested in the role that phagocytes play in the spinal cord injury response. These cells act like “cleaning crews” at the site of tissue damage, engulfing and removing dead cells and debris. Still unknown is whether spinal cord neurons fail to regenerate because phagocytic cells called microglia are unable to penetrate the damaged tissue to work their magic.

Previous studies have shown that microglia migrate rapidly to the location of tissue damage in the spinal cord and create a protective scar. Their interplay with other inflammatory cells during this process remains obscure, though new fluorescent microscopy methodologies as used by the team at University of Virginia could change this.

According to the researchers, understanding the dynamics of phagocytic cells through single-cell analyses can inform therapeutic strategies. Knowing what cell type is the phagocyte at the site of damage would allow us to specifically target that cell type or subtype of cells to eat more of the cellular debris after the brain or spinal cord injury, says Ravichandran.

"Plus, via these single-cell analyses, we will also learn how the genetic program of the 'cleaning crew' changes at the injury site over time, and this would help us to mold the response toward better tissue repair."



Source: EurekAlert

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JUL 18, 2021
Drug Discovery & Development
COVID-19 Antibiotic No More Effective than Placebo
JUL 18, 2021
COVID-19 Antibiotic No More Effective than Placebo
Azithromycin, a broad-spectrum antibiotic commonly used to prevent symptoms of COVID-19 in non-hospitalized patients, do ...
JUL 27, 2021
Cell & Molecular Biology
Nanobodies May Prevent Complications From Infection in Transplant Recipents
JUL 27, 2021
Nanobodies May Prevent Complications From Infection in Transplant Recipents
In recent years, scientists java turned their attention to small antibodies that are produced by animals like sharks, ca ...
AUG 31, 2021
Clinical & Molecular DX
Five Questions to Help You Select the Best Cellular Stain
AUG 31, 2021
Five Questions to Help You Select the Best Cellular Stain
Cellular stains are organic fluorescent dyes or fluorescent conjugates designed to localize to a specific organelle or c ...
SEP 02, 2021
Immunology
Will an Extra COVID Vaccine Shot Benefit People With Autoimmune Conditions?
SEP 02, 2021
Will an Extra COVID Vaccine Shot Benefit People With Autoimmune Conditions?
The global rollout of COVID-19 vaccines has helped save countless lives during the pandemic. Studies have shown that vac ...
SEP 01, 2021
Coronavirus
It Seems Not All COVID-19 Patients Develop Antibodies
SEP 01, 2021
It Seems Not All COVID-19 Patients Develop Antibodies
It's been generally assumed that people who get infected with SARS-COV-2 will develop antibodies to the virus, which cau ...
SEP 26, 2021
Coronavirus
LIBRA-Seq ID's a Potent Antibody to Fight COVID-19
SEP 26, 2021
LIBRA-Seq ID's a Potent Antibody to Fight COVID-19
Humans can produce millions or even billions of antibodies, so only so many can be captured and screened. But those anti ...
Loading Comments...