MAY 02, 2020 12:12 PM PDT

Cellular "Cleaning Crews" Get Busy During Spinal Cord Injury

WRITTEN BY: Tara Fernandez

 

Nerve cells transmit and receive information traversing the human body in the form of electrical impulses. These extremely delicate and sensitive cells are easily damaged as a result of accidents or disease. Following impairment, their likelihood of regaining function largely depends on their anatomical location. Nerves in the limbs and torso, for example, are able to repair themselves and regain some function.

Neurons in the brain and spinal cord, however, do not have these regenerative capabilities. Here, their healing is hindered by excessive scar tissue formation and inhibitory molecular processes inside the nerves. Consequently, around 40 percent of individuals with spinal cord injuries are considered paraplegic, and 60 percent are quadriplegic.

What are the cellular and molecular changes during spinal cord injury that are frustrating regeneration? Could the involvement of inflammatory processes be doing more harm than good?

Jonathan Kipnis and Kodi Ravichandran from the University of Virginia School of Medicine are seeking answers to these and other unanswered questions which could serve as a foundation for spinal cord injury therapies. The work is part of a $14 million grant to support research on inflammation from the Chan Zuckerberg Initiative.

In particular, the scientists are interested in the role that phagocytes play in the spinal cord injury response. These cells act like “cleaning crews” at the site of tissue damage, engulfing and removing dead cells and debris. Still unknown is whether spinal cord neurons fail to regenerate because phagocytic cells called microglia are unable to penetrate the damaged tissue to work their magic.

Previous studies have shown that microglia migrate rapidly to the location of tissue damage in the spinal cord and create a protective scar. Their interplay with other inflammatory cells during this process remains obscure, though new fluorescent microscopy methodologies as used by the team at University of Virginia could change this.

According to the researchers, understanding the dynamics of phagocytic cells through single-cell analyses can inform therapeutic strategies. Knowing what cell type is the phagocyte at the site of damage would allow us to specifically target that cell type or subtype of cells to eat more of the cellular debris after the brain or spinal cord injury, says Ravichandran.

"Plus, via these single-cell analyses, we will also learn how the genetic program of the 'cleaning crew' changes at the injury site over time, and this would help us to mold the response toward better tissue repair."



Source: EurekAlert

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
DEC 28, 2020
Genetics & Genomics
Mapping Networks of Gene Expression in Cells
DEC 28, 2020
Mapping Networks of Gene Expression in Cells
Every cell contains our whole genome, but not all genes are turned on all the time; gene expression has to be very caref ...
JAN 11, 2021
Immunology
Can Immune cells contribute to Lung Diseases Severity?!
JAN 11, 2021
Can Immune cells contribute to Lung Diseases Severity?!
Macrophages are a type of immune cell that can detect and destruct bacteria, viruses, and harmful materials. They a ...
FEB 09, 2021
Immunology
Putting the Kibosh on HIV's Stealth Tactics
FEB 09, 2021
Putting the Kibosh on HIV's Stealth Tactics
The human immunodeficiency virus or HIV is always one step of the immune system, a tactic that makes it impossible to co ...
FEB 10, 2021
Drug Discovery & Development
Black Men Respond Best to Immunotherapy for Prostate Cancer
FEB 10, 2021
Black Men Respond Best to Immunotherapy for Prostate Cancer
Researchers from Northwestern University have found that Black men and men of African ancestry respond better than men f ...
APR 13, 2021
Immunology
Food-borne Fungus Impedes Gut Healing
APR 13, 2021
Food-borne Fungus Impedes Gut Healing
In a recent study, researchers discovered that a fungus present in cheese, processed meats, beer, and other fermented fo ...
APR 23, 2021
Microbiology
A Causal Connection Between C-Section Births & Food Allergies
APR 23, 2021
A Causal Connection Between C-Section Births & Food Allergies
The microbes that live in the human gut have a powerful influence on our health, and that microbial community is with us ...
Loading Comments...