MAY 26, 2020 7:30 AM PDT

The Hunt for Rare Immune Cells, to InfinityFlow and Beyond

WRITTEN BY: Tara Fernandez

 

The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopulations. Researchers have developed a new tool called InfinityFlow to help them classify the identities of these cell subsets with greater precision using artificial intelligence.

White blood cells account for just 1 percent of all blood cells, but form a critical frontline against viruses, bacteria, parasites and other foreign invaders. Produced in the bone marrow, this heterogeneous mix of cell subtypes include monocytes, neutrophils, basophils, and eosinophils — each with their own highly specialized biology and role. 

Immunophenotyping, the protocol used for identifying whilte blood cells, uses a standard “cluster of differentiation” (CD) nomenclature based on the presence of specific cell surface markers. For instance, T-lymphocytes are also known as CD4 cells, and can be distinguished from other white blood cells based on the expression of a CD4 receptor on their cell surface. With research advances, this CD marker library is expanding and immunologists are challenged with accurately assigning markers to immune cell subtypes that may bear only subtle differences in function and anatomical location.

Florent Ginhoux and his team from the Singapore Immunology Network (SIgN) have published a study in Immunology, describing a new method driven by artificial intelligence that characterizes immune cells with unprecedented accuracy based on a panel of 332 markers.

InfinityFlow has revealed the presence of rare immune cell subsets with important implications in autoimmune disease. The CD14 marker was previously thought to be unique to monocytes. However, InfinityFlow analysis has revealed that a tiny fraction of CD14-positive cells are not monocytes at all, but instead dendritic cells, tree-shaped cells known to promote inflammation.

These newly defined dendritic cells were found to contribute to the onset and progression of systemic lupus erythematosus, an autoimmune disease exacerbated by the pro-inflammatory molecules that dendritic cells secrete. InfinityFlow could potentially revolutionize research and drug development for diseases such as cancer, by more precisely profiling immune cells.

“From a clinical perspective, we may get to a point where we can pinpoint which immune cell is the ‘bad guy’ and develop drugs to kill or remove it,” said Ginhoux.

 

 

Sources: A*Star Research, Immunity.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JUL 30, 2021
Cancer
Obesity Reduces Mortality in Advanced Prostate Cancer
JUL 30, 2021
Obesity Reduces Mortality in Advanced Prostate Cancer
Obese patients with an advanced form of prostate cancer survive longer than their slimmer counterparts, according to res ...
AUG 07, 2021
Cancer
New Drug Combo Eliminates Pancreatic Cancer in Mice
AUG 07, 2021
New Drug Combo Eliminates Pancreatic Cancer in Mice
A combination of three immunotherapy drugs can eliminate pancreatic tumors in mice. The study was published in Canc ...
SEP 02, 2021
Immunology
Hobit Activates Cancer-Killing Immune Cells
SEP 02, 2021
Hobit Activates Cancer-Killing Immune Cells
Innate lymphoid cells, or ILCs, are specialized immune cells that are increasingly entering the research spotlight. Thes ...
SEP 07, 2021
Immunology
Designer Cells for Treating Arthritis Are Activated by Inflammation
SEP 07, 2021
Designer Cells for Treating Arthritis Are Activated by Inflammation
Scientists have developed a new cell therapy for arthritis that becomes activated in the presence of inflammation. When ...
SEP 09, 2021
Drug Discovery & Development
Can vaccines help prevent and treat opioid addiction?
SEP 09, 2021
Can vaccines help prevent and treat opioid addiction?
According to the United States Centers for Disease Control (CDC), 136 people die from an opioid overdose every ...
OCT 07, 2021
Cancer
Dual Threat: CAR T Cells Modified to Target Two Neuroblastoma Antigens
OCT 07, 2021
Dual Threat: CAR T Cells Modified to Target Two Neuroblastoma Antigens
Neuroblastoma is a cancer of immature nerve cells found in various areas, including the adrenal glands, neck, chest ...
Loading Comments...