MAY 26, 2020 7:30 AM PDT

The Hunt for Rare Immune Cells, to InfinityFlow and Beyond

WRITTEN BY: Tara Fernandez

 

The immune landscape is staggeringly complex, with a myriad of genetically and functionally distinct immune cell subpopulations. Researchers have developed a new tool called InfinityFlow to help them classify the identities of these cell subsets with greater precision using artificial intelligence.

White blood cells account for just 1 percent of all blood cells, but form a critical frontline against viruses, bacteria, parasites and other foreign invaders. Produced in the bone marrow, this heterogeneous mix of cell subtypes include monocytes, neutrophils, basophils, and eosinophils — each with their own highly specialized biology and role. 

Immunophenotyping, the protocol used for identifying whilte blood cells, uses a standard “cluster of differentiation” (CD) nomenclature based on the presence of specific cell surface markers. For instance, T-lymphocytes are also known as CD4 cells, and can be distinguished from other white blood cells based on the expression of a CD4 receptor on their cell surface. With research advances, this CD marker library is expanding and immunologists are challenged with accurately assigning markers to immune cell subtypes that may bear only subtle differences in function and anatomical location.

Florent Ginhoux and his team from the Singapore Immunology Network (SIgN) have published a study in Immunology, describing a new method driven by artificial intelligence that characterizes immune cells with unprecedented accuracy based on a panel of 332 markers.

InfinityFlow has revealed the presence of rare immune cell subsets with important implications in autoimmune disease. The CD14 marker was previously thought to be unique to monocytes. However, InfinityFlow analysis has revealed that a tiny fraction of CD14-positive cells are not monocytes at all, but instead dendritic cells, tree-shaped cells known to promote inflammation.

These newly defined dendritic cells were found to contribute to the onset and progression of systemic lupus erythematosus, an autoimmune disease exacerbated by the pro-inflammatory molecules that dendritic cells secrete. InfinityFlow could potentially revolutionize research and drug development for diseases such as cancer, by more precisely profiling immune cells.

“From a clinical perspective, we may get to a point where we can pinpoint which immune cell is the ‘bad guy’ and develop drugs to kill or remove it,” said Ginhoux.

 

 

Sources: A*Star Research, Immunity.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
AUG 14, 2020
Microbiology
Seasonal Flu Vaccine Immunity Probably Wears Off
AUG 14, 2020
Seasonal Flu Vaccine Immunity Probably Wears Off
From year to year, the influenza virus mutates and swaps genes with other flu viruses, and we need a new vaccine. But th ...
SEP 11, 2020
Immunology
Could a Drug for Cats Treat COVID?
SEP 11, 2020
Could a Drug for Cats Treat COVID?
Canadian researchers have discovered that a drug used to treat coronavirus infections in cats shows promise in helping C ...
OCT 08, 2020
Immunology
Air Pollution Particles Detected in the Placenta, Immune Cells Mop Them Up
OCT 08, 2020
Air Pollution Particles Detected in the Placenta, Immune Cells Mop Them Up
Tiny, black particles much like those found in polluted air have been found in the placentas of pregnant women, as repor ...
NOV 01, 2020
Cell & Molecular Biology
There's More to Neutrophil Function Than We Knew
NOV 01, 2020
There's More to Neutrophil Function Than We Knew
Neutrophils are an abundant type of white blood cell that circulate in the blood that can provide a general defense aga ...
NOV 06, 2020
Immunology
The Coronavirus Is No Match Against Sybody 23
NOV 06, 2020
The Coronavirus Is No Match Against Sybody 23
The virus that causes COVID-19, SARS-CoV-2, uses its spike protein to gain access to cells, by binding to the ACE2 recep ...
NOV 12, 2020
Health & Medicine
Measles Cases and Deaths Surge Worldwide
NOV 12, 2020
Measles Cases and Deaths Surge Worldwide
Today, the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) released a stat ...
Loading Comments...