OCT 24, 2015 2:39 PM PDT

Linking the Immune Cells of the Brain to Alzheimer's

WRITTEN BY: Kara Marker
Microglia hold down the fort in the brain as the primary immune cell presence. When brain disease hits, they get rid of injured neurons by breaking their synapses, their connection to other neurons, in order to protect the brain against disease. Even though microglia make up 10 percent of the brain's cells, until 2005 scientists thought that the microglia only came out to play when a foreign invader threatened the brain's safety. 
Microglia and neuron synapses
After research studies showed microglia to be the fastest moving cells in a healthy adult brain, other studies began to figure out just what extra role the microglia were fulfilling. More studies produced results showing interactions between microglia and neuron synapses in healthy brains.

Similarly to peripheral macrophages, microglia produce cytokines and chemokines to induce the immune response during brain injury (University of Carlifornia, Irvine). They are also the cells that manage the immune response once a pathogen has been successfully contained, secreting interleukin 10 and other anti-inflammatory cytokines to stop inflammation.

 Neuroscientists at a lab in Boston's Children's Hospital looked into microglia action during early brain development. Microglia were found to be eliminating unnecessary neuron synapses, since the brain initially develops with more than it needs. Dr. Emily Lehrman discovered a "protective tag" that communicates to microglia which synapses to leave alone so the immune cells don't eliminate too many - similar to how immune cells recognize host cells as "self" when patrolling the body looking for foreign invaders. 

"Excess engulfment by microglia and overpruning of neuronal connections" occurred when experimental mice had their protective tag removed. 

Another group at the European Molecular Biology Laboratory in Germany is looking at the role of fractalkine, a molecule heavily involved in neuron-microglia signaling. Fractalkine receptors are found only on microglia, and experimentally removing these receptors cause the microglia to neglect deleting weak synaptic connections like they normally do in early development. Microglia also mature similarly to neurons, further insinuating a connection between neurons, fractalkine, and microglia. 

In this studies when microglia did not delete weak synaptic connections, brain development was hindered and signs of autism occurred. Scientists are not yet certain whether this connection is a cause or effect relationship. 

As part of their role of deleting dead and dying cells during disease, microglia have also been found to be ingesting and disposing of beta-amyloid deposits in cases of Alzheimer's disease. This discovery could be the microglia delaying or exacerbating the progression of Alzheimer's. 

A lot is still unknown about the precise role of microglia as the immune cells of the brain. There is a connection, though, and as soon as scientists can determine how to manipulate this mechanism, there will be a lot of areas in which to create new therapeutics. 

Watch the following video to see "microglia in action" amongst neurons in the brain. 



Source: Scientific American 
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 04, 2020
Microbiology
Why the Brain Parasite You May Carry Isn't a Problem
AUG 04, 2020
Why the Brain Parasite You May Carry Isn't a Problem
Toxoplasma gondii is a parasite transmitted by cats and contaminated meat, and it's thought that over 30 million America ...
SEP 08, 2020
Immunology
Regular Opioid Users Are More Sensitive to Pain, Immune System to Blame
SEP 08, 2020
Regular Opioid Users Are More Sensitive to Pain, Immune System to Blame
Opioids are painkillers such as oxycodone (OxyContin and Percocet) and hydrocodone (Vicodin) that are synthesized to mim ...
SEP 17, 2020
Immunology
COVID Vaccine Works in Macaques - What about in Humans?
SEP 17, 2020
COVID Vaccine Works in Macaques - What about in Humans?
Pharmaceutical giant Pfizer, in partnership with BioNTech has reported that one of its lead vaccine candidates has shown ...
NOV 06, 2020
Drug Discovery & Development
New Vaccine Shows Promise for Herpes
NOV 06, 2020
New Vaccine Shows Promise for Herpes
The World Health Organization estimates that over 500 million people have Herpes Simplex Virus Type 2 (HSV-2), a sexuall ...
NOV 16, 2020
Immunology
Australian COVID-19 vaccine is promising and could be released next year
NOV 16, 2020
Australian COVID-19 vaccine is promising and could be released next year
Pharmaceutical companies worldwide are racing to develop a COVID-19 vaccine that will hopefully end this pandemic and he ...
NOV 16, 2020
Immunology
Measles Is Back and COVID Isn't Helping
NOV 16, 2020
Measles Is Back and COVID Isn't Helping
Measles is a highly contagious and airborne viral disease. There is no treatment besides supportive care once a person b ...
Loading Comments...