OCT 24, 2020 2:19 PM PDT

New CRISPR-Based Imaging Tool Is Going to Be HiUGE

WRITTEN BY: Tara Fernandez

A team of researchers at Duke University have developed an imaging technology for tagging structures at a cellular level that overcomes the shortcomings of existing antibody-based techniques. Immunofluorescence imaging is a key part of the cell biologist’s toolbox, in which a fluorescent ‘flare’ attached to an antibody allows them to visualize the presence of specific target proteins in cell or tissue samples. The issue is that this specificity isn’t always 100 percent — sometimes the antibodies bind to other closely related proteins as well, making it difficult to interpret the results.

Duke’s cell biology chair Scott Soderling has led a team that developed Homology-independent Universal Genome Engineering (HiUGE), an innovation that uses gene-editing technology to rise above the shortcomings of traditional commercial antibodies for imaging.

“We had this idea that CRISPR could be a really amazing tool to address the pressing problem of trying to identify and label these hundreds of proteins,” said Soderling. 

“What we developed was a new modular method for basically taking the labeling problem and flipping it on its head.”

HiUGE uses CRISPR to insert a short genetic sequence into the target protein’s gene using an adenovirus delivery system. This molecular tag which codes for a segment of amino acid sequences is detected by a highly sensitive antibody which is significantly more reliable than many of the commercially-available antibodies for research on the market. Different combinations of these CRISPR tags have the potential to mark hundreds of proteins and the technology can easily be adapted to automated, high-throughput laboratory imaging processes.

Neuronal signaling has been a key focus of Soderling’s research and the discovery of HiUGE is allowing the team to “see” these intricate processes in the brain like never before. Relying on antibodies has been a barrier, in part because they fail to visualize the complex myriad of molecular events occurring at the synaptic junction at high enough resolution. HiUGE can be administered to mice, allowing scientists to map and track the dynamics and localization of neural proteins with stunning clarity as depicted in the video.

 

Sources: Neuroresource, Duke University.



 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
AUG 06, 2020
Immunology
Resetting the Body's Danger Sensor
AUG 06, 2020
Resetting the Body's Danger Sensor
The human body has a sophisticated danger-sensing mechanism that alerts the immune system when something is not right. T ...
AUG 24, 2020
Drug Discovery & Development
FDA Grants Emergency Approval for Blood Plasma to Treat COVID-19
AUG 24, 2020
FDA Grants Emergency Approval for Blood Plasma to Treat COVID-19
The US Food and Drug Agency (FDA) has given emergency approval for expanded use of antibody-rich blood plasma to help th ...
SEP 03, 2020
Immunology
A Low-Cost COVID-19 Treatment, Made in Horses
SEP 03, 2020
A Low-Cost COVID-19 Treatment, Made in Horses
Researchers in Costa Rica are turning to horses as an unlikely source of potential therapeutic antibodies against COVID- ...
SEP 21, 2020
Cell & Molecular Biology
The Hormones We Have at Birth Are Linked to Disease Throughout Life
SEP 21, 2020
The Hormones We Have at Birth Are Linked to Disease Throughout Life
New work may help explain why some autoimmune or immune-related diseases are more common in women, who are more likely t ...
OCT 29, 2020
Cell & Molecular Biology
How Does the Immune System Handle the Microbiome?
OCT 29, 2020
How Does the Immune System Handle the Microbiome?
The human body plays host to trillions of microbes, and many of them live in our gastrointestinal tract; these microorga ...
NOV 02, 2020
Immunology
New Cancer Drug Reboots Stalled Immunotherapies
NOV 02, 2020
New Cancer Drug Reboots Stalled Immunotherapies
In contrast to traditional chemotherapies, immunotherapies reprogram the patient’s own immune system to fight tumo ...
Loading Comments...