OCT 24, 2020 2:19 PM PDT

New CRISPR-Based Imaging Tool Is Going to Be HiUGE

WRITTEN BY: Tara Fernandez

A team of researchers at Duke University have developed an imaging technology for tagging structures at a cellular level that overcomes the shortcomings of existing antibody-based techniques. Immunofluorescence imaging is a key part of the cell biologist’s toolbox, in which a fluorescent ‘flare’ attached to an antibody allows them to visualize the presence of specific target proteins in cell or tissue samples. The issue is that this specificity isn’t always 100 percent — sometimes the antibodies bind to other closely related proteins as well, making it difficult to interpret the results.

Duke’s cell biology chair Scott Soderling has led a team that developed Homology-independent Universal Genome Engineering (HiUGE), an innovation that uses gene-editing technology to rise above the shortcomings of traditional commercial antibodies for imaging.

“We had this idea that CRISPR could be a really amazing tool to address the pressing problem of trying to identify and label these hundreds of proteins,” said Soderling. 

“What we developed was a new modular method for basically taking the labeling problem and flipping it on its head.”

HiUGE uses CRISPR to insert a short genetic sequence into the target protein’s gene using an adenovirus delivery system. This molecular tag which codes for a segment of amino acid sequences is detected by a highly sensitive antibody which is significantly more reliable than many of the commercially-available antibodies for research on the market. Different combinations of these CRISPR tags have the potential to mark hundreds of proteins and the technology can easily be adapted to automated, high-throughput laboratory imaging processes.

Neuronal signaling has been a key focus of Soderling’s research and the discovery of HiUGE is allowing the team to “see” these intricate processes in the brain like never before. Relying on antibodies has been a barrier, in part because they fail to visualize the complex myriad of molecular events occurring at the synaptic junction at high enough resolution. HiUGE can be administered to mice, allowing scientists to map and track the dynamics and localization of neural proteins with stunning clarity as depicted in the video.

 

Sources: Neuroresource, Duke University.



 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 04, 2020
Coronavirus
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
NOV 04, 2020
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
COVID-19, the illness caused by the pandemic virus SARS-CoV-2, is known to cause blood clots all over the body in some p ...
NOV 17, 2020
Drug Discovery & Development
Antibiotics Before Age 2 Linked to Childhood Health Conditions
NOV 17, 2020
Antibiotics Before Age 2 Linked to Childhood Health Conditions
Researchers from Mayo Clinic have found a link between children aged two and under taking antibiotics and an increased r ...
DEC 08, 2020
Immunology
Drug Targets Cold Tumors' Achilles Heel
DEC 08, 2020
Drug Targets Cold Tumors' Achilles Heel
Immunotherapies have emerged as a powerful treatment modality for cancer. They join chemotherapy, surgery, radiotherapy, ...
DEC 07, 2020
Cell & Molecular Biology
An Autoimmune Link to Heart Disease is ID'ed
DEC 07, 2020
An Autoimmune Link to Heart Disease is ID'ed
CNIC researchers have found that there is an autoimmune link to cardiovascular disease that may improve diagnostic and t ...
DEC 13, 2020
Cell & Molecular Biology
The Immune Response to Infection and Vaccination Depends on Previous Infections
DEC 13, 2020
The Immune Response to Infection and Vaccination Depends on Previous Infections
After we are exposed to a pathogen or in the case of vaccines, a portion of a pathogen, our body mounts an immune respon ...
DEC 28, 2020
Immunology
Inhaling a Puff of Llama Antibodies to Relieve COVID
DEC 28, 2020
Inhaling a Puff of Llama Antibodies to Relieve COVID
Scientists at the National Institutes of Health have identified new antibody-based weapons in the fight against COVID-19 ...
Loading Comments...