JUL 29, 2021 6:00 AM PDT

Scientists Discover Bacterial Life on Human Fetuses

WRITTEN BY: Tara Fernandez

A developing fetus in its second trimester of life is changing at an extraordinarily rapid pace––bones are beginning to form, it’s slowly able to hear and swallow, and a functional gastrointestinal tract is taking shape. Around this time, the fetus is also preparing for its ultimate challenge: surviving life outside the womb. 

Classically, it’s believed that newborns only have protective barriers (skin and mucosal linings), their innate immune systems, and a smattering of antibodies passed on from their mothers to protect them from the barrage of environmental microbial threats. 

However, a new study has revealed that the immune systems of developing fetuses are much more complex and diverse than previously thought, thanks to a network of resident bacteria. 

In a study published in the high-impact journal Cell, a team of immunologists analyzed tissue samples collected from the gut, skin, lung, thymus, spleen, and placentas of human fetuses. Using a 16S rRNA gene sequencing approach, the scientists unexpectedly found evidence of several live bacterial strains living within the tissues. These included many types of microbes known to colonize the adult gut, such as Gardnerella, Lactobacillus, and Staphylococcus

The team then visualized the bacteria in fetal tissues using a combination of electron microscopy and RNA-in situ hybridization techniques, showing that bacteria resided in specific regions within the fetal intestinal lumen. 

Most notably, data from the study revealed that these fetal-isolated bacterial strains could induce memory T cell activation and the proliferation of lymph-node T cells. These represent core processes involved in the priming of the fetal immune system before birth.

The study provides the first evidence that human fetal organs house an ecosystem of microorganisms that play a central role in the developing immune system, with potential implications on life-long immunity.

 

Source: Cell.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JUN 17, 2021
Immunology
How T Cells Sense Dangerous Invaders
JUN 17, 2021
How T Cells Sense Dangerous Invaders
T cells form a major part of our immune defenses, protecting us against the constant barrage of potentially pathogenic p ...
AUG 05, 2021
Technology
Top Ways to Make the Most out of Your Ethernet
AUG 05, 2021
Top Ways to Make the Most out of Your Ethernet
Today, the Ethernet connection has emerged as one of the most popular ways to make the most out of an internet connectio ...
AUG 10, 2021
Immunology
A Tapeworm Drug as a COVID Antiviral?
AUG 10, 2021
A Tapeworm Drug as a COVID Antiviral?
A study by researchers at the Scripps Research Institute looking into potential COVID-19 medications has revealed a surp ...
AUG 31, 2021
Immunology
Convalescent Plasma Therapy for COVID-19 Doesn't Work
AUG 31, 2021
Convalescent Plasma Therapy for COVID-19 Doesn't Work
After encountering an infectious agent, the immune system begins churning out antibodies—Y-shaped warriors that ne ...
SEP 06, 2021
Microbiology
Imbokodo Trial Shows HIV Vaccine Candidate Isn't Effective Enough
SEP 06, 2021
Imbokodo Trial Shows HIV Vaccine Candidate Isn't Effective Enough
HIV vaccines have remained elusive in part because the virus has a powerful ability to mutate, and there are so many str ...
SEP 08, 2021
Health & Medicine
Gene Linked to Endometriosis Could Lead to Non-Hormonal Treatment Options
SEP 08, 2021
Gene Linked to Endometriosis Could Lead to Non-Hormonal Treatment Options
Researchers from the University of Oxford found an association between neuropeptide S receptor 1 (NPSR1) gene variants a ...
Loading Comments...