APR 11, 2016 03:47 PM PDT

Lymph Node Lipid Boosts T Cell Motility

WRITTEN BY: Kara Marker
Two-photon microscopy 3-D mosaic tiled image of a lymph node

If you thought finding a needle in a haystack was hard, try maneuvering a T lymphocyte through the “three-dimensional meshwork” that makes up the lymph node. These immune cells must be able to navigate through the nodes, and until now the mechanism that helped them do so was a mystery.
 
Scientists from Osaka University have published a study in eLife that describes the discovery of lipid mechanism that helps T cell patrol the lymph nodes with speed and efficiency. The lipid, called lysophosphatidic acid (LPA), is produced by an enzyme called autotaxin that comes from fibroblastic reticular cells (FRC), which are a type of stromal cells in the lymph nodes.
 

Researchers describe a “scaffold” that FRCs create, which pairs with autotaxin-enabled T cells to make the lymphocytes “extremely motile.” This is beneficial for human health and disease prevention because the faster and more efficiently T cells can navigate through the lymph node, the more successful they will be at encountering antigen-presenting dendritic cells with signals to attack an invading pathogen.
 
When LPA is produced by autotaxin, the lipid then binds to a receptor called LPA2 in order to provide T cells with efficiency and speed. T cells can detect the presence of LPA as they journey through narrow spaces in the lymph nodes. Thanks to autotaxin enzymes, T cells can travel at a speed of about 10-15 micrometers per minute. This may not sound like much of a feat, but the cells themselves are usually only about 7 micrometers in diameter (Cellular and Molecular Immunology).
 
In the eLife study, when cells’ LPA-producing tissue was removed, T cells within the lymph node struggled to perform as well as those in control mice with active LPA. The same result was seen for mice lacking the receptor LPA2.
 
Cabbage and soybeans are dense with LPA precursors, and LPA can be found as a key ingredient in a few herbal medicines. Continued studies of this lipid could build on its current potential for contributing to strategic development of new ways to control the immune response.
 

Source: Osaka University
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 04, 2018
Clinical & Molecular DX
MAY 04, 2018
New Blood Test Detects Peanut Allergy with 98% Specificity
A new blood test trumps traditional diagnostic methods for determining peanut allergy, the most common allergy for children. From the Medical Research Coun...
JUN 04, 2018
Immunology
JUN 04, 2018
Asthma and Flu Make A Deadly Combination
When someone with a cold or the flu also has an asthma attack, the situation can become life-threatening very quickly. From the University of Montreal, sci...
JUN 12, 2018
Cancer
JUN 12, 2018
CD44 Insights & Cancer Influence
CD44 is a known cell surface protein involved in numerous interactions; it is overexpressed in cancerous tissue and its isoforms are being investigated as targets for cancer immunotherapy...
JUN 13, 2018
Health & Medicine
JUN 13, 2018
Insurance Denials Prevent Patients From Getting Hep C Medication
Some ads are running on television and in major magazines about drugs for hepatitis C, known as Hep C or HCV. Available in the United States since 2014, th...
AUG 17, 2018
Health & Medicine
AUG 17, 2018
Is Influenza Different in Obese Patients?
There are many health risks for obese patients. Cardiovascular disease, diabetes and even some forms of cancer. The immune system can be disrupted when a p...
SEP 04, 2018
Immunology
SEP 04, 2018
Development of Damaging Immune Cells in Tuberculosis Infection
Development of damaging white blood cells occurs during Tuberculosis infection leading to a maladaptive immune response....
Loading Comments...